These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34764964)

  • 1. Potential Phenotyping Methodologies to Assess Inter- and Intravarietal Variability and to Select Grapevine Genotypes Tolerant to Abiotic Stress.
    Carvalho LC; Gonçalves EF; Marques da Silva J; Costa JM
    Front Plant Sci; 2021; 12():718202. PubMed ID: 34764964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opportunities and Limitations of Crop Phenotyping in Southern European Countries.
    Costa JM; Marques da Silva J; Pinheiro C; Barón M; Mylona P; Centritto M; Haworth M; Loreto F; Uzilday B; Turkan I; Oliveira MM
    Front Plant Sci; 2019; 10():1125. PubMed ID: 31608085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenoliner: A New Field Phenotyping Platform for Grapevine Research.
    Kicherer A; Herzog K; Bendel N; Klück HC; Backhaus A; Wieland M; Rose JC; Klingbeil L; Läbe T; Hohl C; Petry W; Kuhlmann H; Seiffert U; Töpfer R
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28708080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling up high-throughput phenotyping for abiotic stress selection in the field.
    Smith DT; Potgieter AB; Chapman SC
    Theor Appl Genet; 2021 Jun; 134(6):1845-1866. PubMed ID: 34076731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops.
    De Ollas C; Morillón R; Fotopoulos V; Puértolas J; Ollitrault P; Gómez-Cadenas A; Arbona V
    Front Plant Sci; 2019; 10():427. PubMed ID: 31057569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotyping methods to assess heat stress resilience in grapevine.
    Pettenuzzo S; Cappellin L; Grando MS; Costantini L
    J Exp Bot; 2022 Sep; 73(15):5128-5148. PubMed ID: 35532318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of image-based phenotyping as an adaptive 4.0 technology for studying plant abiotic stress: A bibliometric and literature review.
    Anshori MF; Dirpan A; Sitaresmi T; Rossi R; Farid M; Hairmansis A; Sapta Purwoko B; Suwarno WB; Nugraha Y
    Heliyon; 2023 Nov; 9(11):e21650. PubMed ID: 38027954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A data workflow to support plant breeding decisions from a terrestrial field-based high-throughput plant phenotyping system.
    Thompson AL; Thorp KR; Conley MM; Roybal M; Moller D; Long JC
    Plant Methods; 2020; 16():97. PubMed ID: 32695214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotyping for waterlogging tolerance in crops: current trends and future prospects.
    Langan P; Bernád V; Walsh J; Henchy J; Khodaeiaminjan M; Mangina E; Negrão S
    J Exp Bot; 2022 Sep; 73(15):5149-5169. PubMed ID: 35642593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new image-based tool for the high throughput phenotyping of pollen viability: evaluation of inter- and intra-cultivar diversity in grapevine.
    Tello J; Montemayor MI; Forneck A; Ibáñez J
    Plant Methods; 2018; 14():3. PubMed ID: 29339970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Phenotyping: A Platform to Accelerate Crop Improvement.
    Jangra S; Chaudhary V; Yadav RC; Yadav NR
    Phenomics; 2021 Apr; 1(2):31-53. PubMed ID: 36939738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field high-throughput phenotyping: the new crop breeding frontier.
    Araus JL; Cairns JE
    Trends Plant Sci; 2014 Jan; 19(1):52-61. PubMed ID: 24139902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root Traits and Phenotyping Strategies for Plant Improvement.
    Paez-Garcia A; Motes CM; Scheible WR; Chen R; Blancaflor EB; Monteros MJ
    Plants (Basel); 2015 Jun; 4(2):334-55. PubMed ID: 27135332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop phenotyping in a context of global change: What to measure and how to do it.
    Araus JL; Kefauver SC; Vergara-Díaz O; Gracia-Romero A; Rezzouk FZ; Segarra J; Buchaillot ML; Chang-Espino M; Vatter T; Sanchez-Bragado R; Fernandez-Gallego JA; Serret MD; Bort J
    J Integr Plant Biol; 2022 Feb; 64(2):592-618. PubMed ID: 34807514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting grapevine breeding for climate-smart viticulture: from genetic resources to predictive genomics.
    Magon G; De Rosa V; Martina M; Falchi R; Acquadro A; Barcaccia G; Portis E; Vannozzi A; De Paoli E
    Front Plant Sci; 2023; 14():1293186. PubMed ID: 38148866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges for a Massive Implementation of Phenomics in Plant Breeding Programs.
    Lobos GA; Estrada F; Del Pozo A; Romero-Bravo S; Astudillo CA; Mora-Poblete F
    Methods Mol Biol; 2022; 2539():135-157. PubMed ID: 35895202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotyping for abiotic stress tolerance in maize.
    Masuka B; Araus JL; Das B; Sonder K; Cairns JE
    J Integr Plant Biol; 2012 Apr; 54(4):238-49. PubMed ID: 22443263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.
    Cabrera-Bosquet L; Crossa J; von Zitzewitz J; Serret MD; Araus JL
    J Integr Plant Biol; 2012 May; 54(5):312-20. PubMed ID: 22420640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting yellow rust in wheat breeding trials by proximal phenotyping and machine learning.
    Koc A; Odilbekov F; Alamrani M; Henriksson T; Chawade A
    Plant Methods; 2022 Mar; 18(1):30. PubMed ID: 35292072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.