These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 34764989)

  • 1. Building a Mammalian Retina: An Eye on Chromatin Structure.
    Daghsni M; Aldiri I
    Front Genet; 2021; 12():775205. PubMed ID: 34764989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives.
    Zibetti C
    Cells; 2022 Feb; 11(5):. PubMed ID: 35269428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retina Development in Vertebrates: Systems Biology Approaches to Understanding Genetic Programs: On the Contribution of Next-Generation Sequencing Methods to the Characterization of the Regulatory Networks Controlling Vertebrate Eye Development.
    Buono L; Martinez-Morales JR
    Bioessays; 2020 Apr; 42(4):e1900187. PubMed ID: 31997389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetics of neural differentiation: Spotlight on enhancers.
    Giacoman-Lozano M; Meléndez-Ramírez C; Martinez-Ledesma E; Cuevas-Diaz Duran R; Velasco I
    Front Cell Dev Biol; 2022; 10():1001701. PubMed ID: 36313573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic regulation of retinal development.
    Raeisossadati R; Ferrari MFR; Kihara AH; AlDiri I; Gross JM
    Epigenetics Chromatin; 2021 Feb; 14(1):11. PubMed ID: 33563331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project.
    Siggens L; Ekwall K
    J Intern Med; 2014 Sep; 276(3):201-14. PubMed ID: 24605849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gonadal supporting cells acquire sex-specific chromatin landscapes during mammalian sex determination.
    Garcia-Moreno SA; Futtner CR; Salamone IM; Gonen N; Lovell-Badge R; Maatouk DM
    Dev Biol; 2019 Feb; 446(2):168-179. PubMed ID: 30594505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene networks: dissecting pathways in retinal development and disease.
    Gregory-Evans CY; Wallace VA; Gregory-Evans K
    Prog Retin Eye Res; 2013 Mar; 33():40-66. PubMed ID: 23128416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenomic profiling of retinal progenitors reveals LHX2 is required for developmental regulation of open chromatin.
    Zibetti C; Liu S; Wan J; Qian J; Blackshaw S
    Commun Biol; 2019; 2():142. PubMed ID: 31044167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of cis regulatory features in the embryonic zebrafish genome through large-scale profiling of H3K4me1 and H3K4me3 binding sites.
    Aday AW; Zhu LJ; Lakshmanan A; Wang J; Lawson ND
    Dev Biol; 2011 Sep; 357(2):450-62. PubMed ID: 21435340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and function of distal regulatory elements during neurogenesis and neuroplasticity.
    Thakurela S; Sahu SK; Garding A; Tiwari VK
    Genome Res; 2015 Sep; 25(9):1309-24. PubMed ID: 26170447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin Profiling Techniques: Exploring the Chromatin Environment and Its Contributions to Complex Traits.
    Chawla A; Nagy C; Turecki G
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome of Atoh7 retinal progenitor cells identifies new Atoh7-dependent regulatory genes for retinal ganglion cell formation.
    Gao Z; Mao CA; Pan P; Mu X; Klein WH
    Dev Neurobiol; 2014 Nov; 74(11):1123-40. PubMed ID: 24799426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Dynamic Epigenetic Landscape of the Retina During Development, Reprogramming, and Tumorigenesis.
    Aldiri I; Xu B; Wang L; Chen X; Hiler D; Griffiths L; Valentine M; Shirinifard A; Thiagarajan S; Sablauer A; Barabas ME; Zhang J; Johnson D; Frase S; Zhou X; Easton J; Zhang J; Mardis ER; Wilson RK; Downing JR; Dyer MA;
    Neuron; 2017 May; 94(3):550-568.e10. PubMed ID: 28472656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Three-Dimensional Organization of Mammalian Genomes.
    Yu M; Ren B
    Annu Rev Cell Dev Biol; 2017 Oct; 33():265-289. PubMed ID: 28783961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.
    Zhao MT; Shao NY; Hu S; Ma N; Srinivasan R; Jahanbani F; Lee J; Zhang SL; Snyder MP; Wu JC
    Circ Res; 2017 Nov; 121(11):1237-1250. PubMed ID: 29030344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin architecture and the regulation of nuclear receptor inducible transcription.
    Biddie SC
    J Neuroendocrinol; 2011 Jan; 23(1):94-106. PubMed ID: 21039975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic insights into chromatin reprogramming to totipotency in embryos.
    Ladstätter S; Tachibana K
    J Cell Biol; 2019 Jan; 218(1):70-82. PubMed ID: 30257850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development.
    Perenthaler E; Yousefi S; Niggl E; Barakat TS
    Front Cell Neurosci; 2019; 13():352. PubMed ID: 31417368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Toolbox for Untangling Chromosome Architecture in Immune Cells.
    Liu S; Zhao K
    Front Immunol; 2021; 12():670884. PubMed ID: 33995409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.