These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 34765787)
1. Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines. Ramírez-Restrepo R; Sagastume-Gutiérrez A; Cabello-Eras J; Hernández B; Duarte-Forero J Heliyon; 2021 Nov; 7(11):e08273. PubMed ID: 34765787 [TBL] [Abstract][Full Text] [Related]
2. Data supporting the evaluation of the energy recovery potential of thermoelectric generators in diesel engines. Ramírez R; Gutiérrez AS; Cabello Eras JJ; Hernández B; Duarte Forero J Data Brief; 2020 Feb; 28():105075. PubMed ID: 32226815 [TBL] [Abstract][Full Text] [Related]
3. Compatibility optimization of a polyhedral-shape thermoelectric generator for automobile exhaust recovery considering backpressure effects. Quan R; Wang J; Li T Heliyon; 2022 Dec; 8(12):e12348. PubMed ID: 36590521 [TBL] [Abstract][Full Text] [Related]
4. Efficiency Enhancement in Ocean Thermal Energy Conversion: A Comparative Study of Heat Exchanger Designs for Bi Chung YC; Wu CI Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591609 [TBL] [Abstract][Full Text] [Related]
5. Multidisiplinary design optimization of a power generation system based on waste energy recovery from an internal combustion engine using organic Rankine cycle and thermoelectric generator. Chammam A; Tripathi AK; Aslla-Quispe AP; Huamán-Romaní YL; Abdullaev SS; Hussien NA; Alkhayyat A; Alsalamy AH; Pant R Chemosphere; 2023 Nov; 340():139876. PubMed ID: 37604339 [TBL] [Abstract][Full Text] [Related]
6. Additive fabrication and experimental validation of a lightweight thermoelectric generator. Fanciulli C; Abedi H; Nespoli A; Dondè R; La Terra C; Migliorini F; Passaretti F; De Iuliis S Sci Rep; 2023 Jun; 13(1):10042. PubMed ID: 37340036 [TBL] [Abstract][Full Text] [Related]
8. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery. Liu P; Shu G; Tian H; Wang X Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265228 [TBL] [Abstract][Full Text] [Related]
9. Microturbine and Thermoelectric Generator Combined System: A Case Study. Miozzo A; Boldrini S; Ferrario A; Fabrizio M J Nanosci Nanotechnol; 2017 Mar; 17(3):1601-607. PubMed ID: 29693978 [TBL] [Abstract][Full Text] [Related]
10. Effects of Installing Different Types of Cooling Fins on the Cold Side of a Thermoelectric Power Generation Device on the Thermal Efficiency and Exergy Efficiency of Power Cable Surface Waste Heat Recovery. Hu Z; de León F; Wang R; Li Y Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630127 [TBL] [Abstract][Full Text] [Related]
11. Influences of the Thomson Effect on the Performance of a Thermoelectric Generator-Driven Thermoelectric Heat Pump Combined Device. Feng Y; Chen L; Meng F; Sun F Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265119 [TBL] [Abstract][Full Text] [Related]
12. Summary of Turbocharging as a Waste Heat Recovery System for a Variable Altitude Internal Combustion Engine. Peng Q; Liu R; Zhou G; Zhao X; Dong S; Zhang Z; Zhang H ACS Omega; 2023 Aug; 8(31):27932-27952. PubMed ID: 37576650 [TBL] [Abstract][Full Text] [Related]
13. Effects of atmospheric-plasma system on energy efficiency improvement and emissions reduction from a diesel engine. Chang KL; Amesho KTT; Lin YC; Jhang SR; Chou FC; Chen HC J Environ Manage; 2019 Mar; 234():336-344. PubMed ID: 30639857 [TBL] [Abstract][Full Text] [Related]
14. Design of an innovative system for hydrogen production by electrolysis using waste heat recovery technology in natural gas engines. Orjuela-Abril S; Torregroza-Espinosa A; Duarte-Forero J Heliyon; 2024 May; 10(10):e31364. PubMed ID: 38826757 [TBL] [Abstract][Full Text] [Related]
15. Exergoeconomic Analysis of a Mechanical Compression Refrigeration Unit Run by an ORC. Taban D; Apostol V; Grosu L; Balan MC; Pop H; Dobre C; Dobrovicescu A Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998223 [TBL] [Abstract][Full Text] [Related]
17. Optimization Criteria and Efficiency of a Thermoelectric Generator. Juárez-Huerta VH; Sánchez-Salas N; Chimal-Eguía JC Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554217 [TBL] [Abstract][Full Text] [Related]
18. Human body heat-driven thermoelectric generators as a sustainable power supply for wearable electronic devices: Recent advances, challenges, and future perspectives. Tabaie Z; Omidvar A Heliyon; 2023 Apr; 9(4):e14707. PubMed ID: 37025803 [TBL] [Abstract][Full Text] [Related]
19. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031116. PubMed ID: 22587047 [TBL] [Abstract][Full Text] [Related]
20. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust. Syu JY; Chang YY; Tseng CH; Yan YL; Chang YM; Chen CC; Lin WY J Air Waste Manag Assoc; 2014 Aug; 64(8):970-8. PubMed ID: 25185398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]