These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34765919)

  • 21. Computational solutions for spatial transcriptomics.
    Kleino I; FrolovaitÄ— P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNALocate v2.0: an updated resource for RNA subcellular localization with increased coverage and annotation.
    Cui T; Dou Y; Tan P; Ni Z; Liu T; Wang D; Huang Y; Cai K; Zhao X; Xu D; Lin H; Wang D
    Nucleic Acids Res; 2022 Jan; 50(D1):D333-D339. PubMed ID: 34551440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HumDLoc: Human Protein Subcellular Localization Prediction Using Deep Neural Network.
    Semwal R; Varadwaj PK
    Curr Genomics; 2020 Nov; 21(7):546-557. PubMed ID: 33214771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subcellular spatial transcriptomics identifies three mechanistically different classes of localizing RNAs.
    Cassella L; Ephrussi A
    Nat Commun; 2022 Oct; 13(1):6355. PubMed ID: 36289223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GraphLncLoc: long non-coding RNA subcellular localization prediction using graph convolutional networks based on sequence to graph transformation.
    Li M; Zhao B; Yin R; Lu C; Guo F; Zeng M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36545797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA Localization in Bacteria.
    Fei J; Sharma CM
    Microbiol Spectr; 2018 Sep; 6(5):. PubMed ID: 30191804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Chou's 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment.
    Bouziane H; Chouarfia A
    J Integr Bioinform; 2020 Jun; 18(1):51-79. PubMed ID: 32598314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine and Deep Learning for Prediction of Subcellular Localization.
    Pan G; Sun C; Liao Z; Tang J
    Methods Mol Biol; 2021; 2361():249-261. PubMed ID: 34236666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene ontology based transfer learning for protein subcellular localization.
    Mei S; Fei W; Zhou S
    BMC Bioinformatics; 2011 Feb; 12():44. PubMed ID: 21284890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA localization in bacteria.
    Buskila AA; Kannaiah S; Amster-Choder O
    RNA Biol; 2014; 11(8):1051-60. PubMed ID: 25482897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved Methods for Single-Molecule Fluorescence In Situ Hybridization and Immunofluorescence in Caenorhabditis elegans Embryos.
    Parker DM; Winkenbach LP; Parker A; Boyson S; Nishimura EO
    Curr Protoc; 2021 Nov; 1(11):e299. PubMed ID: 34826343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TACOS: a novel approach for accurate prediction of cell-specific long noncoding RNAs subcellular localization.
    Jeon YJ; Hasan MM; Park HW; Lee KW; Manavalan B
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35753698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant-mSubP: a computational framework for the prediction of single- and multi-target protein subcellular localization using integrated machine-learning approaches.
    Sahu SS; Loaiza CD; Kaundal R
    AoB Plants; 2020 Jun; 12(3):plz068. PubMed ID: 32528639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lnclocator-imb: An Imbalance-tolerant Ensemble Deep Learning Framework for Predicting Long Non-coding RNA Subcellular Localization.
    Liu H; Li D; Wu H
    IEEE J Biomed Health Inform; 2023 Oct; PP():. PubMed ID: 37843994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer vision for image-based transcriptomics.
    Stoeger T; Battich N; Herrmann MD; Yakimovich Y; Pelkmans L
    Methods; 2015 Sep; 85():44-53. PubMed ID: 26014038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SCS: cell segmentation for high-resolution spatial transcriptomics.
    Chen H; Li D; Bar-Joseph Z
    Nat Methods; 2023 Aug; 20(8):1237-1243. PubMed ID: 37429992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MiRLoc: predicting miRNA subcellular localization by incorporating miRNA-mRNA interactions and mRNA subcellular localization.
    Xu M; Chen Y; Xu Z; Zhang L; Jiang H; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35183063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Concepts and methods for transcriptome-wide prediction of chemical messenger RNA modifications with machine learning.
    Acera Mateos P; Zhou Y; Zarnack K; Eyras E
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37139545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.