These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models. Wang J; Zhu ZH; Chen MW; Chen QA; Zhou YG Angew Chem Int Ed Engl; 2019 Feb; 58(6):1813-1817. PubMed ID: 30556234 [TBL] [Abstract][Full Text] [Related]
9. Asymmetric Reduction of Quinolines: A Competition between Enantioselective Transfer Hydrogenation and Racemic Borane Catalysis. Gao B; Han Z; Meng W; Feng X; Du H J Org Chem; 2023 Mar; 88(5):3335-3339. PubMed ID: 36799068 [TBL] [Abstract][Full Text] [Related]
10. Enantioselective synthesis of 1,2,3,4-tetrahydroquinoline-4-ols and 2,3-dihydroquinolin-4(1H)-ones via a sequential asymmetric hydroxylation/diastereoselective oxidation process using Rhodococcus equi ZMU-LK19. Li K; Wang J; Wu K; Zheng D; Zhou X; Han W; Wan N; Cui B; Chen Y Org Biomol Chem; 2017 May; 15(17):3580-3584. PubMed ID: 28177033 [TBL] [Abstract][Full Text] [Related]
11. Enantioselective Synthesis of Tetrahydroquinolines by Borrowing Hydrogen Methodology: Cooperative Catalysis by an Achiral Iridacycle and a Chiral Phosphoric Acid. Lim CS; Quach TT; Zhao Y Angew Chem Int Ed Engl; 2017 Jun; 56(25):7176-7180. PubMed ID: 28509334 [TBL] [Abstract][Full Text] [Related]
12. Direct enantioselective access to 4-substituted tetrahydroquinolines by catalytic asymmetric transfer hydrogenation of quinolines. Rueping M; Theissmann T; Stoeckel M; Antonchick AP Org Biomol Chem; 2011 Oct; 9(19):6844-50. PubMed ID: 21837348 [TBL] [Abstract][Full Text] [Related]
13. Chiral phosphoric acid catalyzed oxidative kinetic resolution of cyclic secondary amine derivatives including tetrahydroquinolines by hydrogen transfer to imines. Saito K; Miyashita H; Akiyama T Chem Commun (Camb); 2015 Dec; 51(93):16648-51. PubMed ID: 26426976 [TBL] [Abstract][Full Text] [Related]
14. The asymmetric synthesis of CF3- or -CF2-substituted tetrahydroquinolines by employing a chiral phosphoric acid as catalyst. Lin JH; Zong G; Du RB; Xiao JC; Liu S Chem Commun (Camb); 2012 Aug; 48(62):7738-40. PubMed ID: 22779079 [TBL] [Abstract][Full Text] [Related]
16. One-Pot Multienzyme Cascades for Stereodivergent Synthesis of Tetrahydroquinolines. De A; Shukla A; Masood Husain S Angew Chem Int Ed Engl; 2024 Dec; 63(50):e202411561. PubMed ID: 39188019 [TBL] [Abstract][Full Text] [Related]
17. Highly enantioselective hydrogenation of quinolines using phosphine-free chiral cationic ruthenium catalysts: scope, mechanism, and origin of enantioselectivity. Wang T; Zhuo LG; Li Z; Chen F; Ding Z; He Y; Fan QH; Xiang J; Yu ZX; Chan AS J Am Chem Soc; 2011 Jun; 133(25):9878-91. PubMed ID: 21574550 [TBL] [Abstract][Full Text] [Related]
18. A highly diastereo- and enantioselective synthesis of tetrahydroquinolines: quaternary stereogenic center inversion and functionalization. Luo C; Huang Y J Am Chem Soc; 2013 Jun; 135(22):8193-6. PubMed ID: 23676113 [TBL] [Abstract][Full Text] [Related]
19. Application of 3-Methyl-2-vinylindoles in Catalytic Asymmetric Povarov Reaction: Diastereo- and Enantioselective Synthesis of Indole-Derived Tetrahydroquinolines. Dai W; Jiang XL; Tao JY; Shi F J Org Chem; 2016 Jan; 81(1):185-92. PubMed ID: 26652222 [TBL] [Abstract][Full Text] [Related]
20. Enantioselective Approach for Expanding the Three-Dimensional Space of Tetrahydroquinoline to Develop BET Bromodomain Inhibitors. Lespinasse MA; Wei K; Perrin J; Winkler M; Hamaidia S; Leroy A; Macek Jilkova Z; Philouze C; Marche PN; Petosa C; Govin J; Emadali A; Wong YS Chemistry; 2022 Nov; 28(64):e202202293. PubMed ID: 35989226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]