BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34766948)

  • 1. Performance in Real World- and Virtual Reality-Based Spatial Navigation Tasks in Patients With Vestibular Dysfunction.
    Biju K; Wei EX; Rebello E; Matthews J; He Q; McNamara TP; Agrawal Y
    Otol Neurotol; 2021 Dec; 42(10):e1524-e1531. PubMed ID: 34766948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local spatial navigation or "steering" in patients with vestibular loss in a virtual reality environment.
    Perez-Heydrich C; Pile M; Padova D; Cevallos A; Newman P; McNamara TP; Sayyid ZN; Agrawal Y
    J Vestib Res; 2023; 33(6):377-383. PubMed ID: 38073359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Navigation strategies in patients with vestibular loss tested in a virtual reality T-maze.
    Gammeri R; Léonard J; Toupet M; Hautefort C; van Nechel C; Besnard S; Machado ML; Nakul E; Montava M; Lavieille JP; Lopez C
    J Neurol; 2022 Aug; 269(8):4333-4348. PubMed ID: 35306619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting real world spatial disorientation in Alzheimer's disease patients using virtual reality navigation tests.
    Puthusseryppady V; Morrissey S; Spiers H; Patel M; Hornberger M
    Sci Rep; 2022 Aug; 12(1):13397. PubMed ID: 35927285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Virtual Reality Simulation to Identify Vision-Related Disability in Patients With Glaucoma.
    Lam AKN; To E; Weinreb RN; Yu M; Mak H; Lai G; Chiu V; Wu K; Zhang X; Cheng TPH; Guo PY; Leung CKS
    JAMA Ophthalmol; 2020 May; 138(5):490-498. PubMed ID: 32191274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociable cerebellar activity during spatial navigation and visual memory in bilateral vestibular failure.
    Jandl NM; Sprenger A; Wojak JF; Göttlich M; Münte TF; Krämer UM; Helmchen C
    Neuroscience; 2015 Oct; 305():257-67. PubMed ID: 26255675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vestibular Loss in Older Adults Is Associated with Impaired Spatial Navigation: Data from the Triangle Completion Task.
    Xie Y; Bigelow RT; Frankenthaler SF; Studenski SA; Moffat SD; Agrawal Y
    Front Neurol; 2017; 8():173. PubMed ID: 28496432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance.
    Coutrot A; Schmidt S; Coutrot L; Pittman J; Hong L; Wiener JM; Hölscher C; Dalton RC; Hornberger M; Spiers HJ
    PLoS One; 2019; 14(3):e0213272. PubMed ID: 30883560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vestibular damage affects the precision and accuracy of navigation in a virtual visual environment.
    Chari DA; Ahmad M; King S; Boutabla A; Fattahi C; Panic AS; Karmali F; Lewis RF
    Brain Commun; 2023; 5(6):fcad345. PubMed ID: 38116141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Presence, Performance, and Behavior between Real, Remote, and Virtual Immersive Environments.
    Khenak N; Vezien J; Bourdot P
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3467-3478. PubMed ID: 32976103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of virtual reality for spatial navigation research across the adult lifespan.
    Diersch N; Wolbers T
    J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of the triangle completion test in the real-world and in virtual reality.
    McLaren R; Chaudhary S; Rashid U; Ravindran S; Taylor D
    Front Hum Neurosci; 2022; 16():945953. PubMed ID: 36034112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control.
    Schöberl F; Zwergal A; Brandt T
    Front Neural Circuits; 2020; 14():6. PubMed ID: 32210769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual Reality for Spatial Navigation.
    Jeung S; Hilton C; Berg T; Gehrke L; Gramann K
    Curr Top Behav Neurosci; 2023; 65():103-129. PubMed ID: 36512288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vestibular cues improve landmark-based route navigation: A simulated driving study.
    Jabbari Y; Kenney DM; von Mohrenschildt M; Shedden JM
    Mem Cognit; 2021 Nov; 49(8):1633-1644. PubMed ID: 34018119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance in complex life situations: effects of age, cognition, and walking speed in virtual versus real life environments.
    Kafri M; Weiss PL; Zeilig G; Bondi M; Baum-Cohen I; Kizony R
    J Neuroeng Rehabil; 2021 Feb; 18(1):30. PubMed ID: 33557894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vestibulo-spatial navigation: pathways and sense of direction.
    Zachou A; Bronstein AM
    J Neurophysiol; 2023 Mar; 129(3):672-684. PubMed ID: 36752494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Virtual Navigation Toolbox: Providing tools for virtual navigation experiments.
    Müller MM; Scherer J; Unterbrink P; Bertrand OJN; Egelhaaf M; Boeddeker N
    PLoS One; 2023; 18(11):e0293536. PubMed ID: 37943845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
    Aronov D; Tank DW
    Neuron; 2014 Oct; 84(2):442-56. PubMed ID: 25374363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wayfinding and path integration deficits detected using a virtual reality mobile app in patients with traumatic brain injury.
    Seton C; Coutrot A; Hornberger M; Spiers HJ; Knight R; Whyatt C
    PLoS One; 2023; 18(3):e0282255. PubMed ID: 36893089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.