These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 34766948)
1. Performance in Real World- and Virtual Reality-Based Spatial Navigation Tasks in Patients With Vestibular Dysfunction. Biju K; Wei EX; Rebello E; Matthews J; He Q; McNamara TP; Agrawal Y Otol Neurotol; 2021 Dec; 42(10):e1524-e1531. PubMed ID: 34766948 [TBL] [Abstract][Full Text] [Related]
2. Local spatial navigation or "steering" in patients with vestibular loss in a virtual reality environment. Perez-Heydrich C; Pile M; Padova D; Cevallos A; Newman P; McNamara TP; Sayyid ZN; Agrawal Y J Vestib Res; 2023; 33(6):377-383. PubMed ID: 38073359 [TBL] [Abstract][Full Text] [Related]
3. Navigation strategies in patients with vestibular loss tested in a virtual reality T-maze. Gammeri R; Léonard J; Toupet M; Hautefort C; van Nechel C; Besnard S; Machado ML; Nakul E; Montava M; Lavieille JP; Lopez C J Neurol; 2022 Aug; 269(8):4333-4348. PubMed ID: 35306619 [TBL] [Abstract][Full Text] [Related]
4. Predicting real world spatial disorientation in Alzheimer's disease patients using virtual reality navigation tests. Puthusseryppady V; Morrissey S; Spiers H; Patel M; Hornberger M Sci Rep; 2022 Aug; 12(1):13397. PubMed ID: 35927285 [TBL] [Abstract][Full Text] [Related]
5. Use of Virtual Reality Simulation to Identify Vision-Related Disability in Patients With Glaucoma. Lam AKN; To E; Weinreb RN; Yu M; Mak H; Lai G; Chiu V; Wu K; Zhang X; Cheng TPH; Guo PY; Leung CKS JAMA Ophthalmol; 2020 May; 138(5):490-498. PubMed ID: 32191274 [TBL] [Abstract][Full Text] [Related]
6. Dissociable cerebellar activity during spatial navigation and visual memory in bilateral vestibular failure. Jandl NM; Sprenger A; Wojak JF; Göttlich M; Münte TF; Krämer UM; Helmchen C Neuroscience; 2015 Oct; 305():257-67. PubMed ID: 26255675 [TBL] [Abstract][Full Text] [Related]
7. Vestibular Loss in Older Adults Is Associated with Impaired Spatial Navigation: Data from the Triangle Completion Task. Xie Y; Bigelow RT; Frankenthaler SF; Studenski SA; Moffat SD; Agrawal Y Front Neurol; 2017; 8():173. PubMed ID: 28496432 [TBL] [Abstract][Full Text] [Related]
8. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. Coutrot A; Schmidt S; Coutrot L; Pittman J; Hong L; Wiener JM; Hölscher C; Dalton RC; Hornberger M; Spiers HJ PLoS One; 2019; 14(3):e0213272. PubMed ID: 30883560 [TBL] [Abstract][Full Text] [Related]
9. Vestibular damage affects the precision and accuracy of navigation in a virtual visual environment. Chari DA; Ahmad M; King S; Boutabla A; Fattahi C; Panic AS; Karmali F; Lewis RF Brain Commun; 2023; 5(6):fcad345. PubMed ID: 38116141 [TBL] [Abstract][Full Text] [Related]
10. Navigation performance in glaucoma: virtual-reality-based assessment of path integration. Andac S; Stolle FH; Bernard M; Al-Nosairy KO; Wolbers T; Hoffmann MB Sci Rep; 2024 Sep; 14(1):21320. PubMed ID: 39266690 [TBL] [Abstract][Full Text] [Related]
11. Spatial Presence, Performance, and Behavior between Real, Remote, and Virtual Immersive Environments. Khenak N; Vezien J; Bourdot P IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3467-3478. PubMed ID: 32976103 [TBL] [Abstract][Full Text] [Related]
12. The potential of virtual reality for spatial navigation research across the adult lifespan. Diersch N; Wolbers T J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728232 [TBL] [Abstract][Full Text] [Related]
13. Reliability of the triangle completion test in the real-world and in virtual reality. McLaren R; Chaudhary S; Rashid U; Ravindran S; Taylor D Front Hum Neurosci; 2022; 16():945953. PubMed ID: 36034112 [TBL] [Abstract][Full Text] [Related]
14. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control. Schöberl F; Zwergal A; Brandt T Front Neural Circuits; 2020; 14():6. PubMed ID: 32210769 [TBL] [Abstract][Full Text] [Related]
15. Virtual Reality for Spatial Navigation. Jeung S; Hilton C; Berg T; Gehrke L; Gramann K Curr Top Behav Neurosci; 2023; 65():103-129. PubMed ID: 36512288 [TBL] [Abstract][Full Text] [Related]
16. Vestibular cues improve landmark-based route navigation: A simulated driving study. Jabbari Y; Kenney DM; von Mohrenschildt M; Shedden JM Mem Cognit; 2021 Nov; 49(8):1633-1644. PubMed ID: 34018119 [TBL] [Abstract][Full Text] [Related]
17. Performance in complex life situations: effects of age, cognition, and walking speed in virtual versus real life environments. Kafri M; Weiss PL; Zeilig G; Bondi M; Baum-Cohen I; Kizony R J Neuroeng Rehabil; 2021 Feb; 18(1):30. PubMed ID: 33557894 [TBL] [Abstract][Full Text] [Related]
18. Vestibulo-spatial navigation: pathways and sense of direction. Zachou A; Bronstein AM J Neurophysiol; 2023 Mar; 129(3):672-684. PubMed ID: 36752494 [TBL] [Abstract][Full Text] [Related]
19. The Virtual Navigation Toolbox: Providing tools for virtual navigation experiments. Müller MM; Scherer J; Unterbrink P; Bertrand OJN; Egelhaaf M; Boeddeker N PLoS One; 2023; 18(11):e0293536. PubMed ID: 37943845 [TBL] [Abstract][Full Text] [Related]
20. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Aronov D; Tank DW Neuron; 2014 Oct; 84(2):442-56. PubMed ID: 25374363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]