These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 34767162)
1. To dream or not to dream in Havana: multi-criteria decision-making for material and energy recovery from municipal solid wastes. Alfonso-Cardero A; Pagés-Díaz J; Kalogirou E; Psomopoulos CS; Lorenzo-Llanes J Environ Sci Pollut Res Int; 2023 Jan; 30(4):8601-8616. PubMed ID: 34767162 [TBL] [Abstract][Full Text] [Related]
2. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Yap HY; Nixon JD Waste Manag; 2015 Dec; 46():265-77. PubMed ID: 26275797 [TBL] [Abstract][Full Text] [Related]
3. Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study. Afrane S; Ampah JD; Agyekum EB; Amoh PO; Yusuf AA; Fattah IMR; Agbozo E; Elgamli E; Shouran M; Mao G; Kamel S Int J Environ Res Public Health; 2022 Jul; 19(14):. PubMed ID: 35886280 [TBL] [Abstract][Full Text] [Related]
4. Using an innovative criteria weighting tool for stakeholders involvement to rank MSW facility sites with the AHP. De Feo G; De Gisi S Waste Manag; 2010 Nov; 30(11):2370-82. PubMed ID: 20444589 [TBL] [Abstract][Full Text] [Related]
5. Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model. Aghajani Mir M; Taherei Ghazvinei P; Sulaiman NM; Basri NE; Saheri S; Mahmood NZ; Jahan A; Begum RA; Aghamohammadi N J Environ Manage; 2016 Jan; 166():109-15. PubMed ID: 26496840 [TBL] [Abstract][Full Text] [Related]
6. Using multi-criteria decision making for selection of the optimal strategy for municipal solid waste management. Jovanovic S; Savic S; Jovicic N; Boskovic G; Djordjevic Z Waste Manag Res; 2016 Sep; 34(9):884-95. PubMed ID: 27354012 [TBL] [Abstract][Full Text] [Related]
7. A system dynamics model and analytical hierarchy process: an integrated approach for achieving sustainable solid waste management system. Gul-E-Hina ; Haydar S Environ Sci Pollut Res Int; 2024 Jan; 31(5):6992-7007. PubMed ID: 38158525 [TBL] [Abstract][Full Text] [Related]
8. Impact of waste processing byproducts on the carbon footprint of integrated waste-to-energy strategies. Abdallah M; Elfeky A J Environ Manage; 2021 Feb; 280():111839. PubMed ID: 33360739 [TBL] [Abstract][Full Text] [Related]
9. A GIS-based multi-criteria fuzzy approach to select a suitable location for a MSW-based power plant and landfill: a case study, Khuzestan province, Iran. Soleymani M; Asakereh A; Safieddin Ardebili SM Environ Monit Assess; 2022 Feb; 194(3):174. PubMed ID: 35150328 [TBL] [Abstract][Full Text] [Related]
10. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement. Ferri GL; Chaves Gde L; Ribeiro GM Waste Manag; 2015 Jun; 40():173-91. PubMed ID: 25840735 [TBL] [Abstract][Full Text] [Related]
11. A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Hadidi LA; Omer MM Waste Manag; 2017 Jan; 59():90-101. PubMed ID: 27773548 [TBL] [Abstract][Full Text] [Related]
12. Application of ANP and DEMATEL to evaluate the decision-making of municipal solid waste management in Metro Manila. Tseng ML Environ Monit Assess; 2009 Sep; 156(1-4):181-97. PubMed ID: 18670898 [TBL] [Abstract][Full Text] [Related]
13. A novel multi-criteria decision-making framework for selecting municipal solid waste management alternative with 2-dimensional uncertain linguistic sets. Che Y; Zhang X Environ Sci Pollut Res Int; 2022 Sep; 29(45):68582-68599. PubMed ID: 35543779 [TBL] [Abstract][Full Text] [Related]
14. Application of a geographic information system-based fuzzy analytic hierarchy process model to locate potential municipal solid waste incineration plant sites: A case study of Izmir Metropolitan Municipality. Yalcinkaya S; Kirtiloglu OS Waste Manag Res; 2021 Jan; 39(1):174-184. PubMed ID: 32662341 [TBL] [Abstract][Full Text] [Related]
15. A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes. Karagiannidis A; Perkoulidis G Bioresour Technol; 2009 Apr; 100(8):2355-60. PubMed ID: 19119004 [TBL] [Abstract][Full Text] [Related]
17. Tackling municipal solid waste crisis in India: Insights into cutting-edge technologies and risk assessment. Singh M; Singh M; Singh SK Sci Total Environ; 2024 Mar; 917():170453. PubMed ID: 38296084 [TBL] [Abstract][Full Text] [Related]
18. Fuzzy multicriteria disposal method and site selection for municipal solid waste. Ekmekçioğlu M; Kaya T; Kahraman C Waste Manag; 2010; 30(8-9):1729-36. PubMed ID: 20303733 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of waste management and energy saving for sustainable green building through analytic hierarchy process and artificial neural network model. Lu Y; Ge Y; Zhang G; Abdulwahab A; Salameh AA; Ali HE; Nguyen Le B Chemosphere; 2023 Mar; 318():137708. PubMed ID: 36621688 [TBL] [Abstract][Full Text] [Related]
20. Assessment of carbon footprint emissions and environmental concerns of solid waste treatment and disposal techniques; case study of Malaysia. Malakahmad A; Abualqumboz MS; Kutty SRM; Abunama TJ Waste Manag; 2017 Dec; 70():282-292. PubMed ID: 28935377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]