These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34767168)

  • 1. The short-term impact of the COVID-19 epidemic on socioeconomic activities in China based on the OMI-NO
    Cao H; Han L
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21682-21691. PubMed ID: 34767168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-negligible impacts of clean air regulations on the reduction of tropospheric NO
    Huang G; Sun K
    Sci Total Environ; 2020 Nov; 745():141023. PubMed ID: 32738690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground-Level NO
    Wei J; Liu S; Li Z; Liu C; Qin K; Liu X; Pinker RT; Dickerson RR; Lin J; Boersma KF; Sun L; Li R; Xue W; Cui Y; Zhang C; Wang J
    Environ Sci Technol; 2022 Jul; 56(14):9988-9998. PubMed ID: 35767687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An intercomparison of satellite-derived ground-level NO₂ concentrations with GMSMB modeling results and in-situ measurements--a North American study.
    Wang B; Chen Z
    Environ Pollut; 2013 Oct; 181():172-81. PubMed ID: 23867698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen oxides concentration and emission change detection during COVID-19 restrictions in North India.
    Misra P; Takigawa M; Khatri P; Dhaka SK; Dimri AP; Yamaji K; Kajino M; Takeuchi W; Imasu R; Nitta K; Patra PK; Hayashida S
    Sci Rep; 2021 May; 11(1):9800. PubMed ID: 33963208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time series analysis and spatial distribution map of aggregate risk index due to tropospheric NO
    Shojaei Baghini N; Falahatkar S; Hassanvand MS
    J Environ Manage; 2022 Feb; 304():114202. PubMed ID: 34883440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Daily ambient NO2 concentration predictions using satellite ozone monitoring instrument NO2 data and land use regression.
    Lee HJ; Koutrakis P
    Environ Sci Technol; 2014 Feb; 48(4):2305-11. PubMed ID: 24437539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling relationship for NO2 pollution and urban population size: a satellite perspective.
    Lamsal LN; Martin RV; Parrish DD; Krotkov NA
    Environ Sci Technol; 2013 Jul; 47(14):7855-61. PubMed ID: 23763377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tropospheric NO
    Cheng S; Ma J; Cheng W; Yan P; Zhou H; Zhou L; Yang P
    J Environ Sci (China); 2019 Jun; 80():186-196. PubMed ID: 30952336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased ozone pollution alongside reduced nitrogen dioxide concentrations during Vienna's first COVID-19 lockdown: Significance for air quality management.
    Brancher M
    Environ Pollut; 2021 Sep; 284():117153. PubMed ID: 33940341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobile MAX-DOAS observation of NO2 and comparison with OMI satellite data in the western coastal areas of the Korean peninsula.
    Chong J; Kim YJ; Gu M; Wagner T; Song CH
    Chemosphere; 2016 Jan; 143():10-6. PubMed ID: 26239513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Response of Air Quality to COVID-19 Lockdown in Xiamen Bay].
    Xu C; Wu SP; Liu YJ; Zhong XF
    Huan Jing Ke Xue; 2021 Oct; 42(10):4650-4659. PubMed ID: 34581107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of NO
    Huang Z; Xu X; Ma M; Shen J
    Environ Sci Pollut Res Int; 2022 Nov; 29(53):80257-80271. PubMed ID: 35713829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005-2014.
    Paraschiv S; Constantin DE; Paraschiv SL; Voiculescu M
    Int J Environ Res Public Health; 2017 Nov; 14(11):. PubMed ID: 29156623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote sensing study of ozone, NO
    Rawat P; Naja M
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):22515-22530. PubMed ID: 34792768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Year-round changes in tropospheric nitrogen dioxide caused by COVID-19 in China using satellite observation.
    Luo Z; Xu H; Zhang Z; Zheng S; Liu H
    J Environ Sci (China); 2023 Oct; 132():162-168. PubMed ID: 37336606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term observations of tropospheric NO
    Tian X; Xie P; Xu J; Li A; Wang Y; Qin M; Hu Z
    J Environ Sci (China); 2018 Sep; 71():207-221. PubMed ID: 30195680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trend reversal from source region to remote tropospheric NO
    Cai X; Yan Y; Li S; Kong S; Liu M; Zhang Z
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15763-15776. PubMed ID: 34633621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Part 1. A time-series study of ambient air pollution and daily mortality in Shanghai, China.
    Kan H; Chen B; Zhao N; London SJ; Song G; Chen G; Zhang Y; Jiang L;
    Res Rep Health Eff Inst; 2010 Nov; (154):17-78. PubMed ID: 21446211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.