These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 34767369)
1. Adaptive Learning Framework in Prediction and Validation of Gibbs Free Energy for Inorganic Crystalline Solids. Yoon J; Choi E; Min K J Phys Chem A; 2021 Nov; 125(46):10103-10110. PubMed ID: 34767369 [TBL] [Abstract][Full Text] [Related]
2. Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Bartel CJ; Millican SL; Deml AM; Rumptz JR; Tumas W; Weimer AW; Lany S; Stevanović V; Musgrave CB; Holder AM Nat Commun; 2018 Oct; 9(1):4168. PubMed ID: 30301890 [TBL] [Abstract][Full Text] [Related]
3. Predicting Synthesizability using Machine Learning on Databases of Existing Inorganic Materials. Zhu R; Tian SIP; Ren Z; Li J; Buonassisi T; Hippalgaonkar K ACS Omega; 2023 Mar; 8(9):8210-8218. PubMed ID: 36910925 [TBL] [Abstract][Full Text] [Related]
4. Prediction of dielectric constants of ABO Kim E; Kim J; Min K Phys Chem Chem Phys; 2022 Mar; 24(11):7050-7059. PubMed ID: 35258051 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamically consistent estimation of Gibbs free energy from data: data reconciliation approach. Salike S; Bhatt N Bioinformatics; 2020 Feb; 36(4):1219-1225. PubMed ID: 31584610 [TBL] [Abstract][Full Text] [Related]
6. Structure-Based Synthesizability Prediction of Crystals Using Partially Supervised Learning. Jang J; Gu GH; Noh J; Kim J; Jung Y J Am Chem Soc; 2020 Nov; 142(44):18836-18843. PubMed ID: 33104335 [TBL] [Abstract][Full Text] [Related]
7. Discovering melting temperature prediction models of inorganic solids by combining supervised and unsupervised learning. Gharakhanyan V; Wirth LJ; Garrido Torres JA; Eisenberg E; Wang T; Trinkle DR; Chatterjee S; Urban A J Chem Phys; 2024 May; 160(20):. PubMed ID: 38804486 [TBL] [Abstract][Full Text] [Related]
8. Single-ion values for ionic solids of both formation enthalpies, Δ(f)H(298)(ion), and Gibbs formation energies, Δ(f)G(298)(ion). Glasser L Inorg Chem; 2013 Jan; 52(2):992-8. PubMed ID: 23289902 [TBL] [Abstract][Full Text] [Related]
9. Searching for Mechanically Superior Solid-State Electrolytes in Li-Ion Batteries Choi E; Jo J; Kim W; Min K ACS Appl Mater Interfaces; 2021 Sep; 13(36):42590-42597. PubMed ID: 34472845 [TBL] [Abstract][Full Text] [Related]
11. Predicting energy and stability of known and hypothetical crystals using graph neural network. Pandey S; Qu J; Stevanović V; St John P; Gorai P Patterns (N Y); 2021 Nov; 2(11):100361. PubMed ID: 34820646 [TBL] [Abstract][Full Text] [Related]
13. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data. Jalem R; Nakayama M; Noda Y; Le T; Takeuchi I; Tateyama Y; Yamazaki H Sci Technol Adv Mater; 2018; 19(1):231-242. PubMed ID: 29707064 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory. Marchese Robinson RL; Geatches D; Morris C; Mackenzie R; Maloney AGP; Roberts KJ; Moldovan A; Chow E; Pencheva K; Vatvani DRM J Chem Inf Model; 2019 Nov; 59(11):4778-4792. PubMed ID: 31638394 [TBL] [Abstract][Full Text] [Related]
15. Practical Deep-Learning Representation for Fast Heterogeneous Catalyst Screening. Gu GH; Noh J; Kim S; Back S; Ulissi Z; Jung Y J Phys Chem Lett; 2020 May; 11(9):3185-3191. PubMed ID: 32191473 [TBL] [Abstract][Full Text] [Related]
16. Predicting physical-chemical properties of compounds from molecular structures by recursive neural networks. Bernazzani L; Duce C; Micheli A; Mollica V; Sperduti A; Starita A; Tiné MR J Chem Inf Model; 2006; 46(5):2030-42. PubMed ID: 16995734 [TBL] [Abstract][Full Text] [Related]
17. Predicting the Enthalpy and Gibbs Energy of Sublimation by QSPR Modeling. Meftahi N; Walker ML; Enciso M; Smith BJ Sci Rep; 2018 Jun; 8(1):9779. PubMed ID: 29950681 [TBL] [Abstract][Full Text] [Related]
18. Coupling a Crystal Graph Multilayer Descriptor to Active Learning for Rapid Discovery of 2D Ferromagnetic Semiconductors/Half-Metals/Metals. Lu S; Zhou Q; Guo Y; Zhang Y; Wu Y; Wang J Adv Mater; 2020 Jul; 32(29):e2002658. PubMed ID: 32538514 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data. Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589 [TBL] [Abstract][Full Text] [Related]
20. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements. Tang YT; Marshall GR J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]