These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34767376)

  • 1. Biosourced Vanillin-Based Building Blocks for Organic Electronic Materials.
    Boivin LP; Dupont W; Leclerc M; Gendron D
    J Org Chem; 2021 Dec; 86(23):16548-16557. PubMed ID: 34767376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vanillin: A Promising Biosourced Building Block for the Preparation of Various Heterocycles.
    Gendron D
    Front Chem; 2022; 10():949355. PubMed ID: 35873060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eugenol, a Promising Building Block for Biobased Polymers with Cutting-Edge Properties.
    Morales-Cerrada R; Molina-Gutierrez S; Lacroix-Desmazes P; Caillol S
    Biomacromolecules; 2021 Sep; 22(9):3625-3648. PubMed ID: 34464094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Waste to Value: Recent Insights into Producing Vanillin from Lignin.
    D'Arrigo P; Rossato LAM; Strini A; Serra S
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a magnetically separable co-immobilized laccase and versatile peroxidase system for the conversion of lignocellulosic biomass to vanillin.
    Saikia K; Vishnu D; Rathankumar AK; Palanisamy Athiyaman B; Batista-García RA; Folch-Mallol JL; Cabana H; Kumar VV
    J Air Waste Manag Assoc; 2020 Dec; 70(12):1252-1259. PubMed ID: 32701040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bright Side of Lignin Depolymerization: Toward New Platform Chemicals.
    Sun Z; Fridrich B; de Santi A; Elangovan S; Barta K
    Chem Rev; 2018 Jan; 118(2):614-678. PubMed ID: 29337543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review on the oxidative catalysis methods of converting lignin into vanillin.
    Xu X; Li P; Zhong Y; Yu J; Miao C; Tong G
    Int J Biol Macromol; 2023 Jul; 243():125203. PubMed ID: 37270116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective.
    Upton BM; Kasko AM
    Chem Rev; 2016 Feb; 116(4):2275-306. PubMed ID: 26654678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Lignin-derived Aromatic Compounds to Novel Biobased Polymers.
    Llevot A; Grau E; Carlotti S; Grelier S; Cramail H
    Macromol Rapid Commun; 2016 Jan; 37(1):9-28. PubMed ID: 26497301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanillin Production in
    García-Hidalgo J; Brink DP; Ravi K; Paul CJ; Lidén G; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Lignocellulose-Based Monomers and Their Polymerization.
    Pei F; Liu L; Zhu H; Guo H
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication modulation of lignin-derived carbon nanosphere supported Pd nanoparticle via lignin fractionation for improved catalytic performance in vanillin hydrodeoxygenation.
    Xue Z; Sun H; Wang G; Sui W; Jia H; Si C
    Int J Biol Macromol; 2024 Feb; 258(Pt 2):128963. PubMed ID: 38154721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin.
    Yang Y; Song WY; Hur HG; Kim TY; Ghatge S
    Int J Biol Macromol; 2019 Mar; 124():200-208. PubMed ID: 30448497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass.
    Li Y; Qi B; Wan Y
    Bioresour Technol; 2014 Sep; 167():324-30. PubMed ID: 24997375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermosetting Polymers from Lignin Model Compounds and Depolymerized Lignins.
    Feghali E; Torr KM; van de Pas DJ; Ortiz P; Vanbroekhoven K; Eevers W; Vendamme R
    Top Curr Chem (Cham); 2018 Jul; 376(4):32. PubMed ID: 29992468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine tuning of Cd
    Xu J; Li M; Qiu J; Zhang XF; Yao J
    Int J Biol Macromol; 2021 Aug; 185():297-305. PubMed ID: 34166691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1.
    Sainsbury PD; Hardiman EM; Ahmad M; Otani H; Seghezzi N; Eltis LD; Bugg TD
    ACS Chem Biol; 2013 Oct; 8(10):2151-6. PubMed ID: 23898824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formic-acid-induced depolymerization of oxidized lignin to aromatics.
    Rahimi A; Ulbrich A; Coon JJ; Stahl SS
    Nature; 2014 Nov; 515(7526):249-52. PubMed ID: 25363781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Added-Value Chemicals from Lignin Oxidation.
    Costa CAE; Vega-Aguilar CA; Rodrigues AE
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.