These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34767378)

  • 1. Membrane Activity of a DNA-Based Ion Channel Depends on the Stability of Its Double-Stranded Structure.
    Morzy D; Joshi H; Sandler SE; Aksimentiev A; Keyser UF
    Nano Lett; 2021 Nov; 21(22):9789-9796. PubMed ID: 34767378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion Channels Made from a Single Membrane-Spanning DNA Duplex.
    Göpfrich K; Li CY; Mames I; Bhamidimarri SP; Ricci M; Yoo J; Mames A; Ohmann A; Winterhalter M; Stulz E; Aksimentiev A; Keyser UF
    Nano Lett; 2016 Jul; 16(7):4665-9. PubMed ID: 27324157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Surfactant Enables Efficient Membrane Spanning by Non-Aggregating DNA-Based Ion Channels.
    Morzy D; Schaich M; Keyser UF
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supported membrane nanodevices.
    Anrather D; Smetazko M; Saba M; Alguel Y; Schalkhammer T
    J Nanosci Nanotechnol; 2004; 4(1-2):1-22. PubMed ID: 15112538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-Tile Structures Induce Ionic Currents through Lipid Membranes.
    Göpfrich K; Zettl T; Meijering AE; Hernández-Ainsa S; Kocabey S; Liedl T; Keyser UF
    Nano Lett; 2015 May; 15(5):3134-8. PubMed ID: 25816075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fusion of Lipid and DNA Nanotechnology.
    Darley E; Singh JKD; Surace NA; Wickham SFJ; Baker MAB
    Genes (Basel); 2019 Dec; 10(12):. PubMed ID: 31816934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Assembly of Membrane-Spanning DNA Nanopores.
    Göpfrich K; Ohmann A; Keyser UF
    Methods Mol Biol; 2021; 2186():33-48. PubMed ID: 32918728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defined Bilayer Interactions of DNA Nanopores Revealed with a Nuclease-Based Nanoprobe Strategy.
    Burns JR; Howorka S
    ACS Nano; 2018 Apr; 12(4):3263-3271. PubMed ID: 29493216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic lipid membrane channels formed by designed DNA nanostructures.
    Langecker M; Arnaut V; Martin TG; List J; Renner S; Mayer M; Dietz H; Simmel FC
    Science; 2012 Nov; 338(6109):932-6. PubMed ID: 23161995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of channel-forming peptide nanostructures.
    Arseneault M; Dumont M; Otis F; Voyer N
    Biophys Chem; 2012 Mar; 162():6-13. PubMed ID: 22245249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wicking: a rapid method for manually inserting ion channels into planar lipid bilayers.
    Costa JA; Nguyen DA; Leal-Pinto E; Gordon RE; Hanss B
    PLoS One; 2013; 8(5):e60836. PubMed ID: 23717384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics of Membrane-Spanning DNA Channels: Conductance Mechanism, Electro-Osmotic Transport, and Mechanical Gating.
    Yoo J; Aksimentiev A
    J Phys Chem Lett; 2015 Dec; 6(23):4680-7. PubMed ID: 26551518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, assembly, and characterization of membrane-spanning DNA nanopores.
    Lanphere C; Offenbartl-Stiegert D; Dorey A; Pugh G; Georgiou E; Xing Y; Burns JR; Howorka S
    Nat Protoc; 2021 Jan; 16(1):86-130. PubMed ID: 33349702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Co-reconstitution of Multiple Membrane Proteins in Lipid Bilayer Nanodiscs Using DNA as a Scaffold.
    Raschle T; Lin C; Jungmann R; Shih WM; Wagner G
    ACS Chem Biol; 2015 Nov; 10(11):2448-54. PubMed ID: 26356202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane insertion of a voltage sensor helix.
    Wee CL; Chetwynd A; Sansom MS
    Biophys J; 2011 Jan; 100(2):410-9. PubMed ID: 21244837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Electrochemical and PM-IRRAS Studies of Colicin E1 Ion Channels in the Floating Bilayer Lipid Membrane.
    Su Z; Ho D; Merrill AR; Lipkowski J
    Langmuir; 2019 Jun; 35(25):8452-8459. PubMed ID: 31194562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing.
    Sugawara M
    Chem Rec; 2018 Apr; 18(4):433-444. PubMed ID: 29135061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of an ion channel in lipid bilayers: implicit solvent model calculations with gramicidin.
    Bransburg-Zabary S; Kessel A; Gutman M; Ben-Tal N
    Biochemistry; 2002 Jun; 41(22):6946-54. PubMed ID: 12033927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic Interactions between DNA Duplexes and Synthetic and Biological Membranes.
    Jones SF; Joshi H; Terry SJ; Burns JR; Aksimentiev A; Eggert US; Howorka S
    J Am Chem Soc; 2021 Jun; 143(22):8305-8313. PubMed ID: 34015219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.