These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34767392)

  • 1. Criterion for Critical Junctions in Elastic-Plastic Adhesive Wear.
    Brach S; Collet S
    Phys Rev Lett; 2021 Oct; 127(18):185501. PubMed ID: 34767392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical length scale controls adhesive wear mechanisms.
    Aghababaei R; Warner DH; Molinari JF
    Nat Commun; 2016 Jun; 7():11816. PubMed ID: 27264270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the debris-level origins of adhesive wear.
    Aghababaei R; Warner DH; Molinari JF
    Proc Natl Acad Sci U S A; 2017 Jul; 114(30):7935-7940. PubMed ID: 28696291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multibond Model of Single-Asperity Tribochemical Wear at the Nanoscale.
    Shao Y; Jacobs TDB; Jiang Y; Turner KT; Carpick RW; Falk ML
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35333-35340. PubMed ID: 28880074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Adhesion Stress in Controlling Transition between Plastic, Grinding and Breakaway Regimes of Adhesive Wear.
    Dimaki AV; Shilko EV; Dudkin IV; Psakhie SG; Popov VL
    Sci Rep; 2020 Jan; 10(1):1585. PubMed ID: 32005834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A story of two transitions: From adhesive to abrasive wear and from ductile to brittle regime.
    Wattel SZ; Molinari JF
    J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38180258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Adhesive Wear in Asperity and Rough Surface Contacts: A Review.
    Zhang H; Goltsberg R; Etsion I
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asperity-Level Origins of Transition from Mild to Severe Wear.
    Aghababaei R; Brink T; Molinari JF
    Phys Rev Lett; 2018 May; 120(18):186105. PubMed ID: 29775361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prediction of polyethylene wear rate and debris morphology produced by microscopic asperities on femoral heads.
    McNie CM; Barton DC; Ingham E; Tipper JL; Fisher J; Stone MH
    J Mater Sci Mater Med; 2000 Mar; 11(3):163-74. PubMed ID: 15348045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An elastic-plastic hybrid adhesion model for contacting rough surfaces in the presence of molecularly thin lubricant.
    Shi X; Polycarpou AA
    J Colloid Interface Sci; 2005 Oct; 290(2):514-25. PubMed ID: 15953609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological study of elastic-plastic-brittle transitions in disordered media.
    Kale S; Ostoja-Starzewski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042405. PubMed ID: 25375508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of plastic strains in ultra-high molecular weight polyethylene due to microscopic asperity interactions during sliding wear.
    McNie C; Barton DC; Stone MH; Fisher J
    Proc Inst Mech Eng H; 1998; 212(1):49-56. PubMed ID: 9529936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brittle-to-quasibrittle transition in bundles of nonlinear elastic fibers.
    Roy C; Manna SS
    Phys Rev E; 2016 Sep; 94(3-1):032126. PubMed ID: 27739735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for predicting wear rates in tooth enamel.
    Borrero-Lopez O; Pajares A; Constantino PJ; Lawn BR
    J Mech Behav Biomed Mater; 2014 Sep; 37():226-34. PubMed ID: 24953823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predominant factor determining wear properties of β-type and (α+β)-type titanium alloys in metal-to-metal contact for biomedical applications.
    Lee YS; Niinomi M; Nakai M; Narita K; Cho K
    J Mech Behav Biomed Mater; 2015 Jan; 41():208-20. PubMed ID: 25460417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling UHMWPE wear debris generation.
    Baudriller H; Chabrand P; Moukoko D
    J Biomed Mater Res B Appl Biomater; 2007 Feb; 80(2):479-85. PubMed ID: 16862559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscale and nanoscale surface strain mapping of single asperity wear in ultra high molecular weight polyethylene: Effects of materials, load, and asperity geometry.
    Wernlé JD; Gilbert JL
    J Biomed Mater Res A; 2010 Jun; 93(4):1442-53. PubMed ID: 19927370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of microscopic surface asperities on the wear of ultra-high molecular weight polyethylene in a knee prosthesis.
    Cho CH; Murakami T; Sawae Y
    Proc Inst Mech Eng H; 2010; 224(4):515-29. PubMed ID: 20476500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element model of loading and unloading of an asperity contact with adhesion and plasticity.
    Du Y; Chen L; McGruer NE; Adams GG; Etsion I
    J Colloid Interface Sci; 2007 Aug; 312(2):522-8. PubMed ID: 17445823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wear transition of solid-solution-strengthened Ti-29Nb-13Ta-4.6Zr alloys by interstitial oxygen for biomedical applications.
    Lee YS; Niinomi M; Nakai M; Narita K; Cho K; Liu H
    J Mech Behav Biomed Mater; 2015 Nov; 51():398-408. PubMed ID: 26301568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.