BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34767508)

  • 21. A Convolutional Neural Network for Ultrasound Plane Wave Image Segmentation With a Small Amount of Phase Array Channel Data.
    Zhang F; Luo L; Zhang Y; Gao X; Li J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2270-2281. PubMed ID: 35552134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of Image Registration for Ultrasound-Guided Prostate Radiotherapy Based on Similarity Measurement by a Convolutional Neural Network.
    Zhu N; Najafi M; Han B; Hancock S; Hristov D
    Technol Cancer Res Treat; 2019 Jan; 18():1533033818821964. PubMed ID: 30803364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images.
    Jia H; Xia Y; Song Y; Zhang D; Huang H; Zhang Y; Cai W
    IEEE Trans Med Imaging; 2020 Feb; 39(2):447-457. PubMed ID: 31295109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Displacement Estimation in Ultrasound Elastography Using Pyramidal Convolutional Neural Network.
    Tehrani AKZ; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2629-2639. PubMed ID: 32070949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Branched Convolutional Neural Networks for Receiver Channel Recovery in High-Frame-Rate Sparse-Array Ultrasound Imaging.
    Pitman WMK; Xiao D; Yiu BYS; Chee AJY; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 May; 71(5):558-571. PubMed ID: 38564354
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating 3-dimensional liver motion using deep learning and 2-dimensional ultrasound images.
    Yagasaki S; Koizumi N; Nishiyama Y; Kondo R; Imaizumi T; Matsumoto N; Ogawa M; Numata K
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):1989-1995. PubMed ID: 33009985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasound transmission tomography image reconstruction with a fully convolutional neural network.
    Zhao W; Wang H; Gemmeke H; van Dongen KWA; Hopp T; Hesser J
    Phys Med Biol; 2020 Nov; 65(23):235021. PubMed ID: 33245050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound Image Segmentation: A Deeply Supervised Network With Attention to Boundaries.
    Mishra D; Chaudhury S; Sarkar M; Soin AS
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1637-1648. PubMed ID: 30346279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Complex-valued PD-net for MRI reconstruction of knee images.
    Jain P; Pradeep CS; Sinha N
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2093-2096. PubMed ID: 36085925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.
    Huang J; Wang S; Zhou G; Hu W; Yu G
    Magn Reson Imaging; 2022 Apr; 87():38-46. PubMed ID: 34968699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Partial Fourier reconstruction of complex MR images using complex-valued convolutional neural networks.
    Xiao L; Liu Y; Yi Z; Zhao Y; Xie L; Cao P; Leong ATL; Wu EX
    Magn Reson Med; 2022 Feb; 87(2):999-1014. PubMed ID: 34611904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of Appropriate Scaling of Networks and Images for Convolutional Neural Network-Based Nerve Detection in Ultrasound-Guided Nerve Blocks.
    Sugino T; Onogi S; Oishi R; Hanayama C; Inoue S; Ishida S; Yao Y; Ogasawara N; Murakawa M; Nakajima Y
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.
    Zhang Y; Guo Y; Lee WN
    IEEE Trans Med Imaging; 2018 Apr; 37(4):906-917. PubMed ID: 29610070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic Tracking of Muscle Cross-Sectional Area Using Convolutional Neural Networks with Ultrasound.
    Chen X; Xie C; Chen Z; Li Q
    J Ultrasound Med; 2019 Nov; 38(11):2901-2908. PubMed ID: 30937932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid Neural Network for Photoacoustic Imaging Reconstruction.
    Lan H; Zhou K; Yang C; Liu J; Gao S; Gao F
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6367-6370. PubMed ID: 31947299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Segmentation and classification of thyroid follicular neoplasm using cascaded convolutional neural network.
    Yang B; Yan M; Yan Z; Zhu C; Xu D; Dong F
    Phys Med Biol; 2020 Dec; 65(24):245040. PubMed ID: 33137800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GRUU-Net: Integrated convolutional and gated recurrent neural network for cell segmentation.
    Wollmann T; Gunkel M; Chung I; Erfle H; Rippe K; Rohr K
    Med Image Anal; 2019 Aug; 56():68-79. PubMed ID: 31200289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning.
    ViƱals R; Thiran JP
    J Imaging; 2023 Nov; 9(12):. PubMed ID: 38132674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.