These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 34767654)
21. The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Nawrocki WJ; Tourasse NJ; Taly A; Rappaport F; Wollman FA Annu Rev Plant Biol; 2015; 66():49-74. PubMed ID: 25580838 [TBL] [Abstract][Full Text] [Related]
22. Plastid Terminal Oxidase as a Route to Improving Plant Stress Tolerance: Known Knowns and Known Unknowns. Johnson GN; Stepien P Plant Cell Physiol; 2016 Jul; 57(7):1387-1396. PubMed ID: 26936791 [TBL] [Abstract][Full Text] [Related]
23. Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. Carrillo LR; Froehlich JE; Cruz JA; Savage LJ; Kramer DM Plant J; 2016 Sep; 87(6):654-63. PubMed ID: 27233821 [TBL] [Abstract][Full Text] [Related]
24. Protein redox regulation in the thylakoid lumen: the importance of disulfide bonds for violaxanthin de-epoxidase. Simionato D; Basso S; Zaffagnini M; Lana T; Marzotto F; Trost P; Morosinotto T FEBS Lett; 2015 Apr; 589(8):919-23. PubMed ID: 25747136 [TBL] [Abstract][Full Text] [Related]
25. NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Pérez-Ruiz JM; Naranjo B; Ojeda V; Guinea M; Cejudo FJ Proc Natl Acad Sci U S A; 2017 Nov; 114(45):12069-12074. PubMed ID: 29078290 [TBL] [Abstract][Full Text] [Related]
26. Stimulation of chlororespiration by heat and high light intensity in oat plants. Quiles MJ Plant Cell Environ; 2006 Aug; 29(8):1463-70. PubMed ID: 16898010 [TBL] [Abstract][Full Text] [Related]
27. Differential expression of recently duplicated PTOX genes in Glycine max during plant development and stress conditions. Maia RA; da Cruz Saraiva KD; Roque ALM; Thiers KLL; Dos Santos CP; da Silva JHM; Feijó DF; Arnholdt-Schmitt B; Costa JH J Bioenerg Biomembr; 2019 Oct; 51(5):355-370. PubMed ID: 31506801 [TBL] [Abstract][Full Text] [Related]
28. Chlororespiration and grana hyperstacking: how an Arabidopsis double mutant can survive despite defects in starch biosynthesis and daily carbon export from chloroplasts. Häusler RE; Geimer S; Kunz HH; Schmitz J; Dörmann P; Bell K; Hetfeld S; Guballa A; Flügge UI Plant Physiol; 2009 Jan; 149(1):515-33. PubMed ID: 18978072 [TBL] [Abstract][Full Text] [Related]
29. Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. Fey V; Wagner R; Braütigam K; Wirtz M; Hell R; Dietzmann A; Leister D; Oelmüller R; Pfannschmidt T J Biol Chem; 2005 Feb; 280(7):5318-28. PubMed ID: 15561727 [TBL] [Abstract][Full Text] [Related]
30. Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms. Shirao M; Kuroki S; Kaneko K; Kinjo Y; Tsuyama M; Förster B; Takahashi S; Badger MR Plant Cell Physiol; 2013 Jul; 54(7):1152-63. PubMed ID: 23624674 [TBL] [Abstract][Full Text] [Related]
31. Conserved active site sequences in Arabidopsis plastid terminal oxidase (PTOX): in vitro and in planta mutagenesis studies. Fu A; Aluru M; Rodermel SR J Biol Chem; 2009 Aug; 284(34):22625-32. PubMed ID: 19542226 [TBL] [Abstract][Full Text] [Related]
32. A protein oxidase catalysing disulfide bond formation is localized to the chloroplast thylakoids. Feng WK; Wang L; Lu Y; Wang XY FEBS J; 2011 Sep; 278(18):3419-30. PubMed ID: 21781282 [TBL] [Abstract][Full Text] [Related]
33. The Mechanism of Variegation in immutans Provides Insight into Chloroplast Biogenesis. Foudree A; Putarjunan A; Kambakam S; Nolan T; Fussell J; Pogorelko G; Rodermel S Front Plant Sci; 2012; 3():260. PubMed ID: 23205022 [TBL] [Abstract][Full Text] [Related]
34. In vitro characterization of a plastid terminal oxidase (PTOX). Josse EM; Alcaraz JP; Labouré AM; Kuntz M Eur J Biochem; 2003 Sep; 270(18):3787-94. PubMed ID: 12950262 [TBL] [Abstract][Full Text] [Related]
35. Plastid alternative oxidase (PTOX) promotes oxidative stress when overexpressed in tobacco. Heyno E; Gross CM; Laureau C; Culcasi M; Pietri S; Krieger-Liszkay A J Biol Chem; 2009 Nov; 284(45):31174-80. PubMed ID: 19740740 [TBL] [Abstract][Full Text] [Related]
36. Physiological links among alternative electron transport pathways that reduce and oxidize plastoquinone in Arabidopsis. Okegawa Y; Kobayashi Y; Shikanai T Plant J; 2010 Aug; 63(3):458-68. PubMed ID: 20497376 [TBL] [Abstract][Full Text] [Related]
37. Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L. Laureau C; De Paepe R; Latouche G; Moreno-Chacón M; Finazzi G; Kuntz M; Cornic G; Streb P Plant Cell Environ; 2013 Jul; 36(7):1296-310. PubMed ID: 23301628 [TBL] [Abstract][Full Text] [Related]
38. Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Houille-Vernes L; Rappaport F; Wollman FA; Alric J; Johnson X Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20820-5. PubMed ID: 22143777 [TBL] [Abstract][Full Text] [Related]
39. The thioredoxin-mediated recycling of Arabidopsis thaliana GRXS16 relies on a conserved C-terminal cysteine. Zannini F; Moseler A; Bchini R; Dhalleine T; Meyer AJ; Rouhier N; Couturier J Biochim Biophys Acta Gen Subj; 2019 Feb; 1863(2):426-436. PubMed ID: 30502392 [TBL] [Abstract][Full Text] [Related]
40. Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). McDonald AE; Ivanov AG; Bode R; Maxwell DP; Rodermel SR; Hüner NP Biochim Biophys Acta; 2011 Aug; 1807(8):954-67. PubMed ID: 21056542 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]