These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34767720)

  • 1. Phototriggered Spatially Controlled Out-of-Equilibrium Patterns of Peptide Nanofibers in a Self-Sorting Double Network Hydrogel.
    Nakamura K; Tanaka W; Sada K; Kubota R; Aoyama T; Urayama K; Hamachi I
    J Am Chem Soc; 2021 Nov; 143(46):19532-19541. PubMed ID: 34767720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging-Based Study on Control Factors over Self-Sorting of Supramolecular Nanofibers Formed from Peptide- and Lipid-type Hydrogelators.
    Kubota R; Liu S; Shigemitsu H; Nakamura K; Tanaka W; Ikeda M; Hamachi I
    Bioconjug Chem; 2018 Jun; 29(6):2058-2067. PubMed ID: 29742348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel.
    Williams RJ; Hall TE; Glattauer V; White J; Pasic PJ; Sorensen AB; Waddington L; McLean KM; Currie PD; Hartley PG
    Biomaterials; 2011 Aug; 32(22):5304-10. PubMed ID: 21531457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural progenitor cells survival and neuronal differentiation in peptide-based hydrogels.
    Song Y; Li Y; Zheng Q; Wu K; Guo X; Wu Y; Yin M; Wu Q; Fu X
    J Biomater Sci Polym Ed; 2011; 22(4-6):475-87. PubMed ID: 20566041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-driven dissipative self-assembly of a peptide hydrogel.
    Liu M; Creemer CN; Reardon TJ; Parquette JR
    Chem Commun (Camb); 2021 Dec; 57(100):13776-13779. PubMed ID: 34860221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability.
    Ding Y; Li Y; Qin M; Cao Y; Wang W
    Langmuir; 2013 Oct; 29(43):13299-306. PubMed ID: 24090141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramolecular interactions of a phenyl/perfluorophenyl pair in the formation of supramolecular nanofibers and hydrogels.
    Hsu SM; Lin YC; Chang JW; Liu YH; Lin HC
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1921-7. PubMed ID: 24420005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications.
    Wang H; Mao D; Wang Y; Wang K; Yi X; Kong D; Yang Z; Liu Q; Ding D
    Sci Rep; 2015 Nov; 5():16680. PubMed ID: 26573372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of self-assembled hydrogels composed of positively or negatively charged peptides as scaffolds for cell culture.
    Nagayasu A; Yokoi H; Minaguchi JA; Hosaka YZ; Ueda H; Takehana K
    J Biomater Appl; 2012 Feb; 26(6):651-65. PubMed ID: 21123284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.
    Koutsopoulos S
    J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force generation by a propagating wave of supramolecular nanofibers.
    Kubota R; Makuta M; Suzuki R; Ichikawa M; Tanaka M; Hamachi I
    Nat Commun; 2020 Jul; 11(1):3541. PubMed ID: 32669562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled peptide amphiphile nanofibers and peg composite hydrogels as tunable ECM mimetic microenvironment.
    Goktas M; Cinar G; Orujalipoor I; Ide S; Tekinay AB; Guler MO
    Biomacromolecules; 2015 Apr; 16(4):1247-58. PubMed ID: 25751623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanospheres of doxorubicin as cross-linkers for a supramolecular hydrogelation.
    Xue Q; Ren H; Xu C; Wang G; Ren C; Hao J; Ding D
    Sci Rep; 2015 Mar; 5():8764. PubMed ID: 25739554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathway driven self-assembly and living supramolecular polymerization in an amyloid-inspired peptide amphiphile.
    Singh A; Joseph JP; Gupta D; Sarkar I; Pal A
    Chem Commun (Camb); 2018 Sep; 54(76):10730-10733. PubMed ID: 30191235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels.
    Gao Y; Yang Z; Kuang Y; Ma ML; Li J; Zhao F; Xu B
    Biopolymers; 2010; 94(1):19-31. PubMed ID: 20091873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of seed formation allows two distinct self-sorting patterns of supramolecular nanofibers.
    Kubota R; Nagao K; Tanaka W; Matsumura R; Aoyama T; Urayama K; Hamachi I
    Nat Commun; 2020 Aug; 11(1):4100. PubMed ID: 32796855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling supramolecular filament chirality of hydrogel by co-assembly of enantiomeric aromatic peptides.
    Yang X; Lu H; Tao Y; Zhang H; Wang H
    J Nanobiotechnology; 2022 Feb; 20(1):77. PubMed ID: 35144637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell differentiation on disk- and string-shaped hydrogels fabricated from Ca(2+) -responsive self-assembling peptides.
    Fukunaga K; Tsutsumi H; Mihara H
    Biopolymers; 2016 Nov; 106(4):476-83. PubMed ID: 26501895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembling peptide nanofiber scaffolds for controlled release governed by gelator design and guest size.
    Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T
    J Control Release; 2010 Nov; 147(3):392-9. PubMed ID: 20709121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.