BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34767891)

  • 21. Land Subsidence and Its Relations with Sinkhole Activity in Karapınar Region, Turkey: A Multi-Sensor InSAR Time Series Study.
    Orhan O; Oliver-Cabrera T; Wdowinski S; Yalvac S; Yakar M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Country-scale assessment of urban areas, population, and households exposed to land subsidence using Sentinel-1 InSAR, and GPS time series.
    Fernández-Torres EA; Cabral-Cano E; Solano-Rojas D; Salazar-Tlaczani L; Gárcia-Venegas J; Marquez-Azúa B; Graham S; Villarnobo-Gonzalez KM
    Nat Hazards (Dordr); 2024; 120(2):1577-1601. PubMed ID: 38298528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Decade of Ground Deformation in Kunming (China) Revealed by Multi-Temporal Synthetic Aperture Radar Interferometry (InSAR) Technique.
    Zhu W; Li WL; Zhang Q; Yang Y; Zhang Y; Qu W; Wang CS
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of InSAR data for measuring land subsidence induced by groundwater withdrawal and climate change in Ardabil Plain, Iran.
    Ghorbani Z; Khosravi A; Maghsoudi Y; Mojtahedi FF; Javadnia E; Nazari A
    Sci Rep; 2022 Aug; 12(1):13998. PubMed ID: 35978063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Land subsidence analysis using synthetic aperture radar data.
    Bokhari R; Shu H; Tariq A; Al-Ansari N; Guluzade R; Chen T; Jamil A; Aslam M
    Heliyon; 2023 Mar; 9(3):e14690. PubMed ID: 36967928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Land subsidence in Bangkok vicinity: Causes and long-term trend analysis using InSAR and machine learning.
    Ahmed S; Hiraga Y; Kazama S
    Sci Total Environ; 2024 Jun; ():174285. PubMed ID: 38942307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deformation Monitoring Based on SBAS-InSAR and Leveling Measurement: A Case Study of the Jing-Mi Diversion Canal in China.
    Luo P; Jin X; Nie D; Liu Y; Wei Y
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon accumulation of tropical peatlands over millennia: a modeling approach.
    Kurnianto S; Warren M; Talbot J; Kauffman B; Murdiyarso D; Frolking S
    Glob Chang Biol; 2015 Jan; 21(1):431-44. PubMed ID: 25044171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Land subsidence prediction in Zhengzhou's main urban area using the GTWR and LSTM models combined with the Attention Mechanism.
    Yuan Y; Zhang D; Cui J; Zeng T; Zhang G; Zhou W; Wang J; Chen F; Guo J; Chen Z; Guo H
    Sci Total Environ; 2024 Jan; 907():167482. PubMed ID: 37839477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Land deformation monitoring in the Taiyuan area based on PS-InSAR.
    Yang Y; Yang W; Peng S; Liu J; Zhang T; Shan H
    Environ Monit Assess; 2022 Jul; 194(9):615. PubMed ID: 35900702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.
    Li L; Zhang M; Katzenstein K
    Ground Water; 2017 Nov; 55(6):871-878. PubMed ID: 28542717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest.
    McCalmont J; Kho LK; Teh YA; Lewis K; Chocholek M; Rumpang E; Hill T
    Glob Chang Biol; 2021 Jun; 27(11):2361-2376. PubMed ID: 33528067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subsidence Rates of Drained Agricultural Peatlands in New Zealand and the Relationship with Time since Drainage.
    Pronger J; Schipper LA; Hill RB; Campbell DI; McLeod M
    J Environ Qual; 2014 Jul; 43(4):1442-9. PubMed ID: 25603091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multidate, multisensor remote sensing reveals high density of carbon-rich mountain peatlands in the páramo of Ecuador.
    Hribljan JA; Suarez E; Bourgeau-Chavez L; Endres S; Lilleskov EA; Chimbolema S; Wayson C; Serocki E; Chimner RA
    Glob Chang Biol; 2017 Dec; 23(12):5412-5425. PubMed ID: 28675672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using machine learning algorithms to predict groundwater levels in Indonesian tropical peatlands.
    Hikouei IS; Eshleman KN; Saharjo BH; Graham LLB; Applegate G; Cochrane MA
    Sci Total Environ; 2023 Jan; 857(Pt 3):159701. PubMed ID: 36306856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China.
    Chen B; Gong H; Chen Y; Li X; Zhou C; Lei K; Zhu L; Duan L; Zhao X
    Sci Total Environ; 2020 Sep; 735():139111. PubMed ID: 32464408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Effects of InSAR Temporal Decorrelation and Its Implications for Land Cover Classification: The Case of the Ocean-Reclaimed Lands of the Shanghai Megacity.
    Ma G; Zhao Q; Wang Q; Liu M
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30181487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regional-scale monitoring of underwater and dry ground subsidence in high phreatic areas of North China Plain.
    Zhou J; Her YG; Niu B; Zhao M; Li X; Yu X
    PLoS One; 2020; 15(8):e0237878. PubMed ID: 32833966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection and analysis of potential landslides based on SBAS-InSAR technology in alpine canyon region.
    Li Y; Feng X; Li Y; Jiang W; Yu W
    Environ Sci Pollut Res Int; 2024 Jan; 31(4):6492-6510. PubMed ID: 38151559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion.
    Warren M; Hergoualc'h K; Kauffman JB; Murdiyarso D; Kolka R
    Carbon Balance Manag; 2017 Dec; 12(1):12. PubMed ID: 28527145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.