BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34767891)

  • 41. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion.
    Warren M; Hergoualc'h K; Kauffman JB; Murdiyarso D; Kolka R
    Carbon Balance Manag; 2017 Dec; 12(1):12. PubMed ID: 28527145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface Subsidence Analysis by Multi-Temporal InSAR and GRACE: A Case Study in Beijing.
    Guo J; Zhou L; Yao C; Hu J
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649183
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monitoring and Analysis of Ground Surface Settlement in Mining Clusters by SBAS-InSAR Technology.
    Wang H; Li K; Zhang J; Hong L; Chi H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632120
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spaceborne Synthetic Aperture Radar Survey of Subsidence in Hampton Roads, Virginia (USA).
    Bekaert DPS; Hamlington BD; Buzzanga B; Jones CE
    Sci Rep; 2017 Nov; 7(1):14752. PubMed ID: 29116168
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mining-Induced Time-Series Deformation Investigation Based on SBAS-InSAR Technique: A Case Study of Drilling Water Solution Rock Salt Mine.
    Liu X; Xing X; Wen D; Chen L; Yuan Z; Liu B; Tan J
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847164
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sentinel-1A for monitoring land subsidence of coastal city of Pakistan using Persistent Scatterers In-SAR technique.
    Hussain MA; Chen Z; Shoaib M; Shah SU; Khan J; Ying Z
    Sci Rep; 2022 Mar; 12(1):5294. PubMed ID: 35351954
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The relation between land use and subsidence in the Vietnamese Mekong delta.
    Minderhoud PSJ; Coumou L; Erban LE; Middelkoop H; Stouthamer E; Addink EA
    Sci Total Environ; 2018 Sep; 634():715-726. PubMed ID: 29649716
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration.
    Jauhiainen J; Limin S; Silvennoinen H; Vasander H
    Ecology; 2008 Dec; 89(12):3503-14. PubMed ID: 19137955
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatial analysis of soil subsidence in peat meadow areas in Friesland in relation to land and water management, climate change, and adaptation.
    Brouns K; Eikelboom T; Jansen PC; Janssen R; Kwakernaak C; van den Akker JJ; Verhoeven JT
    Environ Manage; 2015 Feb; 55(2):360-72. PubMed ID: 25351830
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping in the Urban Area of Belém, Eastern Brazilian Amazon.
    Tavares PA; Beltrão NES; Guimarães US; Teodoro AC
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30845748
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detecting tropical peatland degradation: Combining remote sensing and organic geochemistry.
    Brown C; Boyd DS; Sjögersten S; Vane CH
    PLoS One; 2023; 18(3):e0280187. PubMed ID: 36989287
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scrutinization of land subsidence rate using a supportive predictive model: Incorporating radar interferometry and ensemble soft-computing.
    Choubin B; Shirani K; Hosseini FS; Taheri J; Rahmati O
    J Environ Manage; 2023 Nov; 345():118685. PubMed ID: 37517093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combined SBAS-InSAR and PSO-RF Algorithm for Evaluating the Susceptibility Prediction of Landslide in Complex Mountainous Area: A Case Study of Ludian County, China.
    Xiao B; Zhao J; Li D; Zhao Z; Zhou D; Xi W; Li Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes.
    Moore S; Evans CD; Page SE; Garnett MH; Jones TG; Freeman C; Hooijer A; Wiltshire AJ; Limin SH; Gauci V
    Nature; 2013 Jan; 493(7434):660-3. PubMed ID: 23364745
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis and Prediction of Urban Surface Transformation Based on Small Baseline Subset Interferometric Synthetic Aperture Radar and Sparrow Search Algorithm-Convolutional Neural Network-Long Short-Term Memory Model.
    Chen Y; Du S; Huang P; Ren H; Yin B; Qi Y; Ding C; Xu W
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analyzing gully erosion and deposition patterns in loess tableland: Insights from small baseline subset interferometric synthetic aperture radar (SBAS InSAR).
    Kou P; Xu Q; Jin Z; Tao Y; Yunus AP; Feng J; Pu C; Yuan S; Xia Y
    Sci Total Environ; 2024 Mar; 916():169873. PubMed ID: 38199362
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deformation Time Series and Driving-Force Analysis of Glaciers in the Eastern Tienshan Mountains Using the SBAS InSAR Method.
    Du W; Ji W; Xu L; Wang S
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32326076
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China.
    Hwang C; Yang Y; Kao R; Han J; Shum CK; Galloway DL; Sneed M; Hung WC; Cheng YS; Li F
    Sci Rep; 2016 Jun; 6():28160. PubMed ID: 27324935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soil carbon loss from drained agricultural peatland after coverage with mineral soil.
    Wang Y; Paul SM; Jocher M; Espic C; Alewell C; Szidat S; Leifeld J
    Sci Total Environ; 2021 Dec; 800():149498. PubMed ID: 34426363
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland.
    Hirano T; Kusin K; Limin S; Osaki M
    Glob Chang Biol; 2014 Feb; 20(2):555-65. PubMed ID: 23775585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.