These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34768061)

  • 1. Axisymmetric acoustophoresis for paper pulp concentration.
    Le Magueresse R; Krpic T; Bilodeau M; Schiavi R; Gelinas P; Quaegebeur N
    Ultrason Sonochem; 2021 Dec; 80():105822. PubMed ID: 34768061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis.
    Gautam GP; Gurung R; Fencl FA; Piyasena ME
    Anal Bioanal Chem; 2018 Oct; 410(25):6561-6571. PubMed ID: 30046870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves.
    Johnson KA; Vormohr HR; Doinikov AA; Bouakaz A; Shields CW; López GP; Dayton PA
    Phys Rev E; 2016 May; 93(5):053109. PubMed ID: 27300980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces.
    Lei J
    Microfluid Nanofluidics; 2017; 21(3):50. PubMed ID: 32226357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling of submicron particles for acoustic concentration in gaseous flow.
    Liu J; Li X; Hu FQ
    J Acoust Soc Am; 2020 Jan; 147(1):152. PubMed ID: 32007011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of polymer-shelled microbubble motions in acoustophoresis.
    Kothapalli SV; Wiklund M; Janerot-Sjoberg B; Paradossi G; Grishenkov D
    Ultrasonics; 2016 Aug; 70():275-83. PubMed ID: 27261567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis.
    Nordin M; Laurell T
    Lab Chip; 2012 Nov; 12(22):4610-6. PubMed ID: 22918416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multibody dynamics in acoustophoresis.
    Baasch T; Leibacher I; Dual J
    J Acoust Soc Am; 2017 Mar; 141(3):1664. PubMed ID: 28372083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing WBC background in cancer cell separation products by negative acoustic contrast particle immuno-acoustophoresis.
    Cushing K; Undvall E; Ceder Y; Lilja H; Laurell T
    Anal Chim Acta; 2018 Feb; 1000():256-264. PubMed ID: 29289318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems.
    Lenshof A; Magnusson C; Laurell T
    Lab Chip; 2012 Apr; 12(7):1210-23. PubMed ID: 22362021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic dipole and monopole effects in solid particle interaction dynamics during acoustophoresis.
    Saeidi D; Saghafian M; Haghjooy Javanmard S; Hammarström B; Wiklund M
    J Acoust Soc Am; 2019 Jun; 145(6):3311. PubMed ID: 31255151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decomplexing biofluids using microchip based acoustophoresis.
    Augustsson P; Persson J; Ekström S; Ohlin M; Laurell T
    Lab Chip; 2009 Mar; 9(6):810-8. PubMed ID: 19255663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soundiation: A software in evaluation of acoustophoresis driven by radiation force and torque on axisymmetric objects.
    Tang T; Huang L
    J Acoust Soc Am; 2022 Nov; 152(5):2934. PubMed ID: 36456283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic radiation forces at liquid interfaces impact the performance of acoustophoresis.
    Deshmukh S; Brzozka Z; Laurell T; Augustsson P
    Lab Chip; 2014 Sep; 14(17):3394-400. PubMed ID: 25007385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation.
    Dong J; Liang D; Yang X; Sun C
    Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustophoresis of disk-shaped microparticles: A numerical and experimental study of acoustic radiation forces and torques.
    Garbin A; Leibacher I; Hahn P; Le Ferrand H; Studart A; Dual J
    J Acoust Soc Am; 2015 Nov; 138(5):2759-69. PubMed ID: 26627752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.