These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 34768228)

  • 1. A comprehensive tool for accurate identification of methyl-Glutamine sites.
    Malebary SJ; Alzahrani E; Khan YD
    J Mol Graph Model; 2022 Jan; 110():108074. PubMed ID: 34768228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic characterization and prediction of post-translational modification cross-talk between proteins.
    Huang R; Huang Y; Guo Y; Ji S; Lu M; Li T
    Bioinformatics; 2019 Aug; 35(15):2626-2633. PubMed ID: 30590394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Prediction of Protein Methylation Sites Using a Sequence-Based Feature Selection Technique.
    Wei L; Xing P; Shi G; Ji Z; Zou Q
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1264-1273. PubMed ID: 28222000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration : Malonylation site prediction.
    Liu X; Wang L; Li J; Hu J; Zhang X
    BMC Genomics; 2020 Nov; 21(1):812. PubMed ID: 33225896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of protein methylation sites using conditional random field.
    Xu Y; Ding J; Huang Q; Deng NY
    Protein Pept Lett; 2013 Jan; 20(1):71-7. PubMed ID: 22789108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iMethylK_pseAAC: Improving Accuracy of Lysine Methylation Sites Identification by Incorporating Statistical Moments and Position Relative Features into General PseAAC
    Ilyas S; Hussain W; Ashraf A; Khan YD; Khan SA; Chou KC
    Curr Genomics; 2019 May; 20(4):275-292. PubMed ID: 32030087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization.
    Wang D; Liu D; Yuchi J; He F; Jiang Y; Cai S; Li J; Xu D
    Nucleic Acids Res; 2020 Jul; 48(W1):W140-W146. PubMed ID: 32324217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iPTM-mLys: identifying multiple lysine PTM sites and their different types.
    Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC
    Bioinformatics; 2016 Oct; 32(20):3116-3123. PubMed ID: 27334473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy.
    Wang H; Li H; Gao W; Xie J
    Anal Biochem; 2022 Dec; 658():114935. PubMed ID: 36206844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning method to more accurately recall known lysine acetylation sites.
    Wu M; Yang Y; Wang H; Xu Y
    BMC Bioinformatics; 2019 Jan; 20(1):49. PubMed ID: 30674277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based prediction of post-translational modification cross-talk within proteins using complementary residue- and residue pair-based features.
    Liu HF; Liu R
    Brief Bioinform; 2020 Mar; 21(2):609-620. PubMed ID: 30649184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EDLm
    Zhang L; Li G; Li X; Wang H; Chen S; Liu H
    BMC Bioinformatics; 2021 May; 22(1):288. PubMed ID: 34051729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an experiment-split method for benchmarking the generalization of a PTM site predictor: Lysine methylome as an example.
    Zou G; Zou Y; Ma C; Zhao J; Li L
    PLoS Comput Biol; 2021 Dec; 17(12):e1009682. PubMed ID: 34879076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties.
    Pan G; Jiang L; Tang J; Guo F
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29419752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of protein crotonylation sites through LightGBM classifier based on SMOTE and elastic net.
    Liu Y; Yu Z; Chen C; Han Y; Yu B
    Anal Biochem; 2020 Nov; 609():113903. PubMed ID: 32805274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.