These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34768241)

  • 1. Flexible synthesis of high-performance electrode materials of N-doped carbon coating MnO nanowires for supercapacitors.
    Zhou T; Zhang W; Fu H; Fang J; Chen C; Wang Z
    Nanotechnology; 2021 Dec; 33(8):. PubMed ID: 34768241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-Situ Synthesis of Heterostructured Carbon-Coated Co/MnO Nanowire Arrays for High-Performance Anodes in Asymmetric Supercapacitors.
    Chen G; Zhang X; Ma Y; Song H; Pi C; Zheng Y; Gao B; Fu J; Chu PK
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32679654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Production of Mn₃O₄/rGO as an Efficient Electrode Material for Supercapacitor by Flame Plasma.
    Zhou Y; Guo L; Shi W; Zou X; Xiang B; Xing S
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29795008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed-Phase MnO₂/N-Containing Graphene Composites Applied as Electrode Active Materials for Flexible Asymmetric Solid-State Supercapacitors.
    Chiu HY; Cho CP
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30413002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ growth of MnO@Na
    Ji P; Wan J; Xi Y; Guan Y; Zhang C; Gu X; Li J; Lu J; Zhang D
    Nanotechnology; 2019 Aug; 30(33):335401. PubMed ID: 30836342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.
    Li Y; Mei Y; Zhang LQ; Wang JH; Liu AR; Zhang YJ; Liu SQ
    J Colloid Interface Sci; 2015 Oct; 455():188-93. PubMed ID: 26070189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile fabrication of Ni
    Wang S; Ma S
    Dalton Trans; 2019 Mar; 48(12):3906-3913. PubMed ID: 30815654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor.
    Yu P; Li Y; Zhao X; Wu L; Zhang Q
    Langmuir; 2014 May; 30(18):5306-13. PubMed ID: 24761945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Supercapacitor Electrodes Based on Carbon Cloth-Supported LaMnO
    Ma PP; Lei N; Yu B; Liu YK; Jiang GH; Dai JM; Li SH; Lu QL
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31771280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Interconnected Binder-Free Electrospun MnO@C Nanofibers for Supercapacitor Devices.
    Ramadan M; Abdellah AM; Mohamed SG; Allam NK
    Sci Rep; 2018 May; 8(1):7988. PubMed ID: 29789633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H-TiO(2) @MnO(2) //H-TiO(2) @C core-shell nanowires for high performance and flexible asymmetric supercapacitors.
    Lu X; Yu M; Wang G; Zhai T; Xie S; Ling Y; Tong Y; Li Y
    Adv Mater; 2013 Jan; 25(2):267-72. PubMed ID: 23080535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-limiting electrodeposition of hierarchical MnO₂ and M(OH)₂/MnO₂ nanofibril/nanowires: mechanism and supercapacitor properties.
    Duay J; Sherrill SA; Gui Z; Gillette E; Lee SB
    ACS Nano; 2013 Feb; 7(2):1200-14. PubMed ID: 23327566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Quantum Dot-Induced MnO
    Lv H; Gao X; Xu Q; Liu H; Wang YG; Xia Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40394-40403. PubMed ID: 29072448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability.
    Zhao Y; Ran W; He J; Huang Y; Liu Z; Liu W; Tang Y; Zhang L; Gao D; Gao F
    Small; 2015 Mar; 11(11):1310-9. PubMed ID: 25384679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities.
    Li M; Lei W; Yu Y; Yang W; Li J; Chen D; Xu S; Feng M; Li H
    Nanoscale; 2018 Aug; 10(34):15926-15931. PubMed ID: 30113063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Supported PANI@MnO₂ Coaxial Nanowire Network Sponge as a Binder Free Electrode for Supercapacitors.
    Yang G; Li X; Chen T; Gao W; Dai Y; Li X
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4203-4209. PubMed ID: 31968442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphitic Carbon with MnO/Mn
    Lam DV; Nguyen UNT; Roh E; Choi W; Kim JH; Kim H; Lee SM
    Small; 2021 Jul; 17(29):e2100670. PubMed ID: 34145746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PVP-Assisted Synthesis of Self-Supported Ni
    He Q; Liu XX; Wu R; Chen JS
    Research (Wash D C); 2019; 2019():8013285. PubMed ID: 31912046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MOF-derived manganese oxide/carbon nanocomposites with raised capacitance for stable asymmetric supercapacitor.
    Wang BR; Hu Y; Pan Z; Wang J
    RSC Adv; 2020 Sep; 10(57):34403-34412. PubMed ID: 35514378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.