These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34768241)

  • 21. PVP-Assisted Synthesis of Self-Supported Ni
    He Q; Liu XX; Wu R; Chen JS
    Research (Wash D C); 2019; 2019():8013285. PubMed ID: 31912046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MOF-derived manganese oxide/carbon nanocomposites with raised capacitance for stable asymmetric supercapacitor.
    Wang BR; Hu Y; Pan Z; Wang J
    RSC Adv; 2020 Sep; 10(57):34403-34412. PubMed ID: 35514378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors.
    Liu M; Tjiu WW; Pan J; Zhang C; Gao W; Liu T
    Nanoscale; 2014 Apr; 6(8):4233-42. PubMed ID: 24608664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile synthesis of Al-doped NiO nanosheet arrays for high-performance supercapacitors.
    Chen J; Peng X; Song L; Zhang L; Liu X; Luo J
    R Soc Open Sci; 2018 Nov; 5(11):180842. PubMed ID: 30564394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vertical Graphene@Carbon Fiber Covered with MnO₂ Flower-Like Nanostructures via Electrodeposition for High-Performance Supercapacitors.
    Zhang Z; Xiao Y; Zhang Y; Zhang W
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5864-5870. PubMed ID: 30961751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor.
    Liu Y; Miao X; Fang J; Zhang X; Chen S; Li W; Feng W; Chen Y; Wang W; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5251-60. PubMed ID: 26842681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes.
    Tang P; Han L; Zhang L
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10506-15. PubMed ID: 24905133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Porous α-Fe₂O₃@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances.
    Dong Y; Xing L; Chen K; Wu X
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 29966399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of Advanced MnO/N-Gr 3D Walls through Polymer Cross-Linking for High-Performance Supercapacitor.
    Tran NQ; Kang BK; Tiruneh SN; Yoon DH
    Chemistry; 2016 Jan; 22(5):1652-7. PubMed ID: 26689298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays.
    Zhao G; Tang Y; Wan G; Xu X; Zhou X; Zhou M; Hao C; Deng S; Wang G
    J Colloid Interface Sci; 2020 Jul; 572():151-159. PubMed ID: 32240788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement of capacitive performance of polyaniline based hybrid supercapacitor.
    Rahman MM; Joy PM; Uddin MN; Mukhlish MZB; Khan MMR
    Heliyon; 2021 Jul; 7(7):e07407. PubMed ID: 34286117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Effective Electrodeposition Mode for Porous MnO₂/Ni Foam Composite for Asymmetric Supercapacitors.
    Tsai YC; Yang WD; Lee KC; Huang CM
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors.
    Zhu J; Shi W; Xiao N; Rui X; Tan H; Lu X; Hng HH; Ma J; Yan Q
    ACS Appl Mater Interfaces; 2012 May; 4(5):2769-74. PubMed ID: 22496508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hierarchical Mn₂O₃ Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances.
    Gong F; Lu S; Peng L; Zhou J; Kong J; Jia D; Li F
    Nanomaterials (Basel); 2017 Nov; 7(12):. PubMed ID: 29168756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recycled Carbon Fiber-Supported Polyaniline/Manganese Dioxide Prepared via One-Step Electrodeposition for Flexible Supercapacitor Integrated Electrodes.
    Wang X; Wei H; Du W; Sun X; Kang L; Zhang Y; Zhao X; Jiang F
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MOF-Derived MnO/C Nanocomposites for High-Performance Supercapacitors.
    Qiao Y; Li N; Dong M; Jia P; Ma C; Zhang T; Jiao T
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of CoTe nanowires: a new electrode material for supercapacitor with high stability and high performance.
    Xiao M; Su Y; Zhao M; Du B
    Nanotechnology; 2020 Jan; 31(5):055706. PubMed ID: 31614344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable Synthesis of Nanostructured MnO₂ as Electrode Material of Supercapacitors.
    Huang Y; Weng D; Kang S; Lu J
    J Nanosci Nanotechnol; 2020 Aug; 20(8):4815-4823. PubMed ID: 32126660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.