BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34768250)

  • 1. The kapok petal: superhydrophobic surface induced by microscale trichomes.
    Chen J; Yu S; Fu T; Xu L; Tang Y; Li Z
    Bioinspir Biomim; 2022 Feb; 17(2):. PubMed ID: 34768250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal.
    Bhushan B; Her EK
    Langmuir; 2010 Jun; 26(11):8207-17. PubMed ID: 20131881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods.
    Myint MT; Hornyak GL; Dutta J
    J Colloid Interface Sci; 2014 Feb; 415():32-8. PubMed ID: 24267327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.
    Latthe SS; Terashima C; Nakata K; Fujishima A
    Molecules; 2014 Apr; 19(4):4256-83. PubMed ID: 24714190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials.
    Schulte AJ; Droste DM; Koch K; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Ghasemlou M; Le PH; Daver F; Murdoch BJ; Ivanova EP; Adhikari B
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36558-36573. PubMed ID: 34284587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of the rose petal effect over single- and dual-scale roughness surfaces.
    Yeh KY; Cho KH; Yeh YH; Promraksa A; Huang CH; Hsu CC; Chen LJ
    Nanotechnology; 2014 Aug; 25(34):345303. PubMed ID: 25100802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking from Rose Petal to Lotus Leaf: Biomimetic Multiscale Hierarchical Particles with Tunable Water Adhesion.
    Chen C; Liu M; Zhang L; Hou Y; Yu M; Fu S
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7431-7440. PubMed ID: 30699291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of and Disparity among Biomimetic Superhydrophobic Surfaces with Gecko, Petal, and Lotus Effect.
    Weng W; Tenjimbayashi M; Hu WH; Naito M
    Small; 2022 May; 18(18):e2200349. PubMed ID: 35254004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.
    Lin J; Cai Y; Wang X; Ding B; Yu J; Wang M
    Nanoscale; 2011 Mar; 3(3):1258-62. PubMed ID: 21270991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges.
    Liu H; Zhang Z; Wu C; Su K; Kan X
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peanut leaf inspired multifunctional surfaces.
    Yang S; Ju J; Qiu Y; He Y; Wang X; Dou S; Liu K; Jiang L
    Small; 2014 Jan; 10(2):294-9. PubMed ID: 23908145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Petal effect: a superhydrophobic state with high adhesive force.
    Feng L; Zhang Y; Xi J; Zhu Y; Wang N; Xia F; Jiang L
    Langmuir; 2008 Apr; 24(8):4114-9. PubMed ID: 18312016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creation of "Rose Petal" and "Lotus Leaf" Effects on Alumina by Surface Functionalization and Metal-Ion Coordination.
    Mukhopadhyay RD; Vedhanarayanan B; Ajayaghosh A
    Angew Chem Int Ed Engl; 2017 Dec; 56(50):16018-16022. PubMed ID: 29053212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces.
    Xu P; Zhang Y; Li L; Lin Z; Zhu B; Chen W; Li G; Liu H; Xiao K; Xiong Y; Yang S; Lei Y; Xue L
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35561670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superhydrophobic surfaces: from natural to biomimetic to functional.
    Guo Z; Liu W; Su BL
    J Colloid Interface Sci; 2011 Jan; 353(2):335-55. PubMed ID: 20846662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.