BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34768250)

  • 21. Salvinia-Effect-Inspired "Sticky" Superhydrophobic Surfaces by Meniscus-Confined Electrodeposition.
    Zheng D; Jiang Y; Yu W; Jiang X; Zhao X; Choi CH; Sun G
    Langmuir; 2017 Nov; 33(47):13640-13648. PubMed ID: 29096056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defect by design: Harnessing the "petal effect" for advanced hydrophobic surface applications.
    Mo M; Bai X; Liu Z; Huang Z; Xu M; Ma L; Lai W; Mo Q; Xie S; Li Y; Huang Y; Xiao N; Zheng Y
    J Colloid Interface Sci; 2024 Jun; 673():37-48. PubMed ID: 38875796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface.
    Liang Y; Peng J; Li X; Huang J; Qiu R; Zhang Z; Ren L
    Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.
    Liu Y; Liu J; Li S; Liu J; Han Z; Ren L
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8907-14. PubMed ID: 24016423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lotus leaf-like dual-scale silver film applied as a superhydrophobic and self-cleaning substrate.
    Wu Y; Hang T; Yu Z; Xu L; Li M
    Chem Commun (Camb); 2014 Aug; 50(61):8405-7. PubMed ID: 24946911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic Rose Petal Structures Obtained Using UV-Nanoimprint Lithography.
    Oopath SV; Baji A; Abtahi M
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-cleaning efficiency of artificial superhydrophobic surfaces.
    Bhushan B; Jung YC; Koch K
    Langmuir; 2009 Mar; 25(5):3240-8. PubMed ID: 19239196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new method for producing "Lotus Effect" on a biomimetic shark skin.
    Liu Y; Li G
    J Colloid Interface Sci; 2012 Dec; 388(1):235-42. PubMed ID: 22995249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corrosion Resistance of ZnO Nanorod Superhydrophobic Coatings with Rose Petal Effect or Lotus Leaf Effect.
    Lai DL; Kong G; Li XC; Che CS
    J Nanosci Nanotechnol; 2019 Jul; 19(7):3919-3928. PubMed ID: 30764951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple and Affordable Way To Achieve Polymeric Superhydrophobic Surfaces with Biomimetic Hierarchical Roughness.
    Sun J; Li H; Huang Y; Zheng X; Liu Y; Zhuang J; Wu D
    ACS Omega; 2019 Feb; 4(2):2750-2757. PubMed ID: 31459509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slippery Mechanism for Enhancing Separation and Anti-fouling of the Superhydrophobic Membrane in a Water-in-Oil Emulsion: Evaluating Water Adhesion of the Membrane Surface.
    Liu N; Yang Z; Sun Y; Shan L; Li H; Wang Z
    Langmuir; 2022 Jul; 38(27):8312-8323. PubMed ID: 35767278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical explanation of the photoswitchable superhydrophobicity of diarylethene microcrystalline surfaces.
    Nishikawa N; Mayama H; Nonomura Y; Fujinaga N; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2014 Sep; 30(35):10643-50. PubMed ID: 25111681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of bio-inspired hierarchical structures in wetting.
    Grewal HS; Cho IJ; Yoon ES
    Bioinspir Biomim; 2015 Apr; 10(2):026009. PubMed ID: 25856043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical Rose Petal Surfaces Delay the Early-Stage Bacterial Biofilm Growth.
    Cao Y; Jana S; Bowen L; Tan X; Liu H; Rostami N; Brown J; Jakubovics NS; Chen J
    Langmuir; 2019 Nov; 35(45):14670-14680. PubMed ID: 31630525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nature inspired structured surfaces for biomedical applications.
    Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP
    Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.
    Dong X; Wang J; Zhao Y; Wang Z; Wang S
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5083-8. PubMed ID: 21770147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating.
    Xue CH; Ji XQ; Zhang J; Ma JZ; Jia ST
    Nanotechnology; 2015 Aug; 26(33):335602. PubMed ID: 26222622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From natural to biomimetic: The superhydrophobicity and the contact time.
    Liang YH; Peng J; Li XJ; Xu JK; Zhang ZH; Ren LQ
    Microsc Res Tech; 2016 Aug; 79(8):712-20. PubMed ID: 27252147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.