These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1170 related articles for article (PubMed ID: 34769034)
1. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
3. Dual-crosslinked 3D printed gelatin scaffolds with potential for temporomandibular joint cartilage regeneration. Helgeland E; Rashad A; Campodoni E; Goksøyr Ø; Pedersen TØ; Sandri M; Rosén A; Mustafa K Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33592589 [TBL] [Abstract][Full Text] [Related]
4. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518 [TBL] [Abstract][Full Text] [Related]
5. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
6. Development and optimization of starch-based biomaterial inks and the effect of infill patterns on the mechanical, physicochemical, and biological properties of 3D printed scaffolds for tissue engineering. Shyam R; Palaniappan A Int J Biol Macromol; 2024 Feb; 258(Pt 2):128986. PubMed ID: 38154358 [TBL] [Abstract][Full Text] [Related]
7. Effect of cross-linking on the dimensional stability and biocompatibility of a tailored 3D-bioprinted gelatin scaffold. Choi DJ; Kho Y; Park SJ; Kim YJ; Chung S; Kim CH Int J Biol Macromol; 2019 Aug; 135():659-667. PubMed ID: 31150670 [TBL] [Abstract][Full Text] [Related]
8. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Das S; Jegadeesan JT; Basu B Biomacromolecules; 2024 Apr; 25(4):2156-2221. PubMed ID: 38507816 [TBL] [Abstract][Full Text] [Related]
9. Boron nitride nanotubes reinforced gelatin hydrogel-based ink for bioprinting and tissue engineering applications. Kakarla AB; Kong I; Nguyen TH; Kong C; Irving H Biomater Adv; 2022 Oct; 141():213103. PubMed ID: 36084352 [TBL] [Abstract][Full Text] [Related]
10. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
11. 3D printing of complex GelMA-based scaffolds with nanoclay. Gao Q; Niu X; Shao L; Zhou L; Lin Z; Sun A; Fu J; Chen Z; Hu J; Liu Y; He Y Biofabrication; 2019 Apr; 11(3):035006. PubMed ID: 30836349 [TBL] [Abstract][Full Text] [Related]
12. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue. Adib AA; Sheikhi A; Shahhosseini M; Simeunović A; Wu S; Castro CE; Zhao R; Khademhosseini A; Hoelzle DJ Biofabrication; 2020 Jul; 12(4):045006. PubMed ID: 32464607 [TBL] [Abstract][Full Text] [Related]
13. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Rutz AL; Hyland KE; Jakus AE; Burghardt WR; Shah RN Adv Mater; 2015 Mar; 27(9):1607-14. PubMed ID: 25641220 [TBL] [Abstract][Full Text] [Related]
14. 3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering. Chawla D; Kaur T; Joshi A; Singh N Int J Biol Macromol; 2020 Feb; 144():560-567. PubMed ID: 31857163 [TBL] [Abstract][Full Text] [Related]
15. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Sultan S; Mathew AP J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812 [TBL] [Abstract][Full Text] [Related]
16. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
17. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451 [TBL] [Abstract][Full Text] [Related]
18. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
19. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]