These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 34769323)
1. Overexpression of ZNT1 and NRAMP4 from the Ni Hyperaccumulator Fasani E; DalCorso G; Zorzi G; Agrimonti C; Fragni R; Visioli G; Furini A Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769323 [TBL] [Abstract][Full Text] [Related]
2. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana. Lin YF; Hassan Z; Talukdar S; Schat H; Aarts MG PLoS One; 2016; 11(3):e0149750. PubMed ID: 26930473 [TBL] [Abstract][Full Text] [Related]
3. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Milner MJ; Mitani-Ueno N; Yamaji N; Yokosho K; Craft E; Fei Z; Ebbs S; Clemencia Zambrano M; Ma JF; Kochian LV Plant J; 2014 May; 78(3):398-410. PubMed ID: 24547775 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation. Milner MJ; Craft E; Yamaji N; Koyama E; Ma JF; Kochian LV New Phytol; 2012 Jul; 195(1):113-23. PubMed ID: 22524643 [TBL] [Abstract][Full Text] [Related]
5. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Milner MJ; Kochian LV Ann Bot; 2008 Jul; 102(1):3-13. PubMed ID: 18440996 [TBL] [Abstract][Full Text] [Related]
6. Differences in mineral accumulation and gene expression profiles between two metal hyperaccumulators, Enomoto T; Yoshida J; Mizuno T; Watanabe T; Nishida S Plant Signal Behav; 2021 Oct; 16(10):1945212. PubMed ID: 34227899 [TBL] [Abstract][Full Text] [Related]
7. The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport. Wei W; Chai T; Zhang Y; Han L; Xu J; Guan Z Mol Biotechnol; 2009 Jan; 41(1):15-21. PubMed ID: 18663607 [TBL] [Abstract][Full Text] [Related]
8. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Lasat MM; Pence NS; Garvin DF; Ebbs SD; Kochian LV J Exp Bot; 2000 Jan; 51(342):71-9. PubMed ID: 10938797 [TBL] [Abstract][Full Text] [Related]
9. Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Mizuno T; Usui K; Horie K; Nosaka S; Mizuno N; Obata H Plant Physiol Biochem; 2005 Aug; 43(8):793-801. PubMed ID: 16198592 [TBL] [Abstract][Full Text] [Related]
10. Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. Oomen RJ; Wu J; Lelièvre F; Blanchet S; Richaud P; Barbier-Brygoo H; Aarts MG; Thomine S New Phytol; 2009; 181(3):637-50. PubMed ID: 19054339 [TBL] [Abstract][Full Text] [Related]
11. Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation. Halimaa P; Lin YF; Ahonen VH; Blande D; Clemens S; Gyenesei A; Häikiö E; Kärenlampi SO; Laiho A; Aarts MG; Pursiheimo JP; Schat H; Schmidt H; Tuomainen MH; Tervahauta AI Environ Sci Technol; 2014 Mar; 48(6):3344-53. PubMed ID: 24559272 [TBL] [Abstract][Full Text] [Related]
12. TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Gendre D; Czernic P; Conéjéro G; Pianelli K; Briat JF; Lebrun M; Mari S Plant J; 2007 Jan; 49(1):1-15. PubMed ID: 17144893 [TBL] [Abstract][Full Text] [Related]
13. Metal Interactions in the Ni Hyperaccumulating Population of Fasani E; Zamboni A; Sorio D; Furini A; DalCorso G Biology (Basel); 2023 Dec; 12(12):. PubMed ID: 38132363 [TBL] [Abstract][Full Text] [Related]
14. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils. Mandáková T; Singh V; Krämer U; Lysak MA Plant Physiol; 2015 Sep; 169(1):674-89. PubMed ID: 26195571 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). Küpper H; Kochian LV New Phytol; 2010 Jan; 185(1):114-29. PubMed ID: 19843304 [TBL] [Abstract][Full Text] [Related]
16. Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. Mari S; Gendre D; Pianelli K; Ouerdane L; Lobinski R; Briat JF; Lebrun M; Czernic P J Exp Bot; 2006; 57(15):4111-22. PubMed ID: 17079698 [TBL] [Abstract][Full Text] [Related]
17. Elevated Expression of Vacuolar Nickel Transporter Gene Nishida S; Tanikawa R; Ishida S; Yoshida J; Mizuno T; Nakanishi H; Furuta N Front Plant Sci; 2020; 11():610. PubMed ID: 32582232 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptome analysis of the metal hyperaccumulator Noccaea caerulescens. Halimaa P; Blande D; Aarts MG; Tuomainen M; Tervahauta A; Kärenlampi S Front Plant Sci; 2014; 5():213. PubMed ID: 24904610 [TBL] [Abstract][Full Text] [Related]
19. Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. Richau KH; Kozhevnikova AD; Seregin IV; Vooijs R; Koevoets PLM; Smith JAC; Ivanov VB; Schat H New Phytol; 2009; 183(1):106-116. PubMed ID: 19368671 [TBL] [Abstract][Full Text] [Related]
20. The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. Rigola D; Fiers M; Vurro E; Aarts MG New Phytol; 2006; 170(4):753-65. PubMed ID: 16684236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]