These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 34769323)
21. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Ueno D; Milner MJ; Yamaji N; Yokosho K; Koyama E; Clemencia Zambrano M; Kaskie M; Ebbs S; Kochian LV; Ma JF Plant J; 2011 Jun; 66(5):852-62. PubMed ID: 21457363 [TBL] [Abstract][Full Text] [Related]
22. Transcription profiling of the metal-hyperaccumulator Thlaspi caerulescens (J. & C. PRESL). Plessl M; Rigola D; Hassinen V; Aarts MG; Schat H Z Naturforsch C J Biosci; 2005; 60(3-4):216-23. PubMed ID: 15948586 [TBL] [Abstract][Full Text] [Related]
23. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. van de Mortel JE; Schat H; Moerland PD; Ver Loren van Themaat E; van der Ent S; Blankestijn H; Ghandilyan A; Tsiatsiani S; Aarts MG Plant Cell Environ; 2008 Mar; 31(3):301-24. PubMed ID: 18088336 [TBL] [Abstract][Full Text] [Related]
24. Comparison of protein variations in Thlaspi caerulescens populations from metalliferous and non-metalliferous soils. Visioli G; Pirondini A; Malcevschi A; Marmiroli N Int J Phytoremediation; 2010; 12(8):805-19. PubMed ID: 21166350 [TBL] [Abstract][Full Text] [Related]
25. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Plaza S; Tearall KL; Zhao FJ; Buchner P; McGrath SP; Hawkesford MJ J Exp Bot; 2007; 58(7):1717-28. PubMed ID: 17404382 [TBL] [Abstract][Full Text] [Related]
26. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. van de Mortel JE; Almar Villanueva L; Schat H; Kwekkeboom J; Coughlan S; Moerland PD; Ver Loren van Themaat E; Koornneef M; Aarts MG Plant Physiol; 2006 Nov; 142(3):1127-47. PubMed ID: 16998091 [TBL] [Abstract][Full Text] [Related]
27. Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Visioli G; D'Egidio S; Vamerali T; Mattarozzi M; Sanangelantoni AM Chemosphere; 2014 Dec; 117():538-44. PubMed ID: 25277966 [TBL] [Abstract][Full Text] [Related]
28. [Heavy metal absorption, transportation and accumulation mechanisms in hyperaccumulator Thlaspi caerulescens]. Liu G; Chai T; Sun T Sheng Wu Gong Cheng Xue Bao; 2010 May; 26(5):561-8. PubMed ID: 20684297 [TBL] [Abstract][Full Text] [Related]
29. Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Persans MW; Nieman K; Salt DE Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9995-10000. PubMed ID: 11481436 [TBL] [Abstract][Full Text] [Related]
30. Epigenetic modifications preserve the hyperaccumulator Noccaea caerulescens from Ni geno-toxicity. Gullì M; Marchi L; Fragni R; Buschini A; Visioli G Environ Mol Mutagen; 2018 Jul; 59(6):464-475. PubMed ID: 29656392 [TBL] [Abstract][Full Text] [Related]
31. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens. Fones HN; Eyles CJ; Bennett MH; Smith JAC; Preston GM New Phytol; 2013 Sep; 199(4):916-924. PubMed ID: 23758201 [TBL] [Abstract][Full Text] [Related]
32. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. Kozhevnikova AD; Seregin IV; Erlikh NT; Shevyreva TA; Andreev IM; Verweij R; Schat H New Phytol; 2014 Jul; 203(2):508-519. PubMed ID: 24750120 [TBL] [Abstract][Full Text] [Related]
33. DNA methylation is enhanced during Cd hyperaccumulation in Noccaea caerulescens ecotype Ganges. Galati S; DalCorso G; Furini A; Fragni R; Maccari C; Mozzoni P; Giannelli G; Buschini A; Visioli G Environ Sci Pollut Res Int; 2023 Feb; 30(10):26178-26190. PubMed ID: 36352075 [TBL] [Abstract][Full Text] [Related]
34. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Lombi E; Tearall KL; Howarth JR; Zhao FJ; Hawkesford MJ; McGrath SP Plant Physiol; 2002 Apr; 128(4):1359-67. PubMed ID: 11950984 [TBL] [Abstract][Full Text] [Related]
35. Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines. Klein MA; Sekimoto H; Milner MJ; Kochian LV Plant Physiol; 2008 Aug; 147(4):2006-16. PubMed ID: 18550685 [TBL] [Abstract][Full Text] [Related]
36. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators. Freeman JL; Persans MW; Nieman K; Albrecht C; Peer W; Pickering IJ; Salt DE Plant Cell; 2004 Aug; 16(8):2176-91. PubMed ID: 15269333 [TBL] [Abstract][Full Text] [Related]
37. The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. Merlot S; Hannibal L; Martins S; Martinelli L; Amir H; Lebrun M; Thomine S J Exp Bot; 2014 Apr; 65(6):1551-64. PubMed ID: 24510940 [TBL] [Abstract][Full Text] [Related]
38. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. Papoyan A; Piñeros M; Kochian LV New Phytol; 2007; 175(1):51-58. PubMed ID: 17547666 [TBL] [Abstract][Full Text] [Related]
39. Implications of metal accumulation mechanisms to phytoremediation. Memon AR; Schröder P Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014 [TBL] [Abstract][Full Text] [Related]
40. The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase. Freeman JL; Salt DE BMC Plant Biol; 2007 Nov; 7():63. PubMed ID: 18045473 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]