These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3476936)

  • 1. Molecular dynamics simulations of fluorescence polarization of tryptophans in myoglobin.
    Henry ER; Hochstrasser RM
    Proc Natl Acad Sci U S A; 1987 Sep; 84(17):6142-6. PubMed ID: 3476936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Picosecond fluorescence decay of tryptophans in myoglobin.
    Hochstrasser RM; Negus DK
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4399-403. PubMed ID: 6589602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence and energy transfer of tryptophans in Aplysia myoglobin.
    Janes SM; Holtom G; Ascenzi P; Brunori M; Hochstrasser RM
    Biophys J; 1987 Apr; 51(4):653-60. PubMed ID: 3580491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of heme reorientational motions in myoglobin.
    Henry ER
    Biophys J; 1993 Mar; 64(3):869-85. PubMed ID: 8471731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosecond dynamics of tryptophans in different conformational states of apomyoglobin proteins.
    Tcherkasskaya O; Ptitsyn OB; Knutson JR
    Biochemistry; 2000 Feb; 39(7):1879-89. PubMed ID: 10677239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence decay kinetics of the tryptophyl residues of myoglobin: effect of heme ligation and evidence for discrete lifetime components.
    Willis KJ; Szabo AG; Zuker M; Ridgeway JM; Alpert B
    Biochemistry; 1990 Jun; 29(22):5270-5. PubMed ID: 2383545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of tryptophans in an interhelical hydrophobic cluster of myoglobin alters the thermodynamics of the denaturation transition.
    Radding JA
    Biochemistry; 1987 Jun; 26(12):3530-6. PubMed ID: 3651396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent accessibility of the heme pocket in tuna myoglobin.
    Bismuto E; Savy F; Irace G; Colonna G
    Boll Soc Ital Biol Sper; 1984 Mar; 60(3):459-65. PubMed ID: 6712810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Applications to anisotropic rotations and to protein dynamics.
    Lakowicz JR; Cherek H; Gryczynski I; Joshi N; Johnson ML
    Biophys J; 1987 May; 51(5):755-68. PubMed ID: 3593873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast dynamics of nonequilibrium resonance energy transfer and probing globular protein flexibility of myoglobin.
    Stevens JA; Link JJ; Zang C; Wang L; Zhong D
    J Phys Chem A; 2012 Mar; 116(11):2610-9. PubMed ID: 21863851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching.
    Lakowicz JR; Gryczynski I; Szmacinski H; Cherek H; Joshi N
    Eur Biophys J; 1991; 19(3):125-40. PubMed ID: 1647947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heme methyl hyperfine-shifted nuclear magnetic resonance peaks assigned by selective deuteration as indicators of heme-protein interactions in metmyoglobins.
    La Mar GN; Budd DL; Smith KM
    Biochim Biophys Acta; 1980 Apr; 622(2):210-8. PubMed ID: 7378450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton nuclear magnetic resonance characterization of heme disorder in hemoproteins.
    La Mar GN; Budd DL; Viscio DB; Smith KM; Langry KC
    Proc Natl Acad Sci U S A; 1978 Dec; 75(12):5755-9. PubMed ID: 282600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoglobin structure and regulation of solvent accessibility of heme pocket.
    Bismuto E; Colonna G; Savy F; Irace G
    Int J Pept Protein Res; 1985 Aug; 26(2):195-207. PubMed ID: 4066154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence study of the conformational properties of myoglobin structure. 2. pH- and ligand-induced conformational changes in ferric- and ferrousmyoglobins.
    Postnikova GB; Komarov YE; Yumakova EM
    Eur J Biochem; 1991 May; 198(1):233-9. PubMed ID: 2040284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heme orientational disorder in reconstituted and native sperm whale myoglobin. Proton nuclear magnetic resonance characterizations by heme methyl deuterium labeling in the Met-cyano protein.
    La Mar GN; Davis NL; Parish DW; Smith KM
    J Mol Biol; 1983 Aug; 168(4):887-96. PubMed ID: 6887254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of disordered hemes on energy transfer rates between tryptophans and heme in myoglobin.
    Gryczynski Z; Fronticelli C; Tenenholz T; Bucci E
    Biophys J; 1993 Nov; 65(5):1951-8. PubMed ID: 8298024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imidazole is a sensitive probe of steric hindrance in the distal pockets of oxygen-binding heme proteins.
    Mansy SS; Olson JS; Gonzalez G; Gilles-Gonzalez MA
    Biochemistry; 1998 Sep; 37(36):12452-7. PubMed ID: 9730817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton NMR study of model substrate binding in hemoproteins. Intercalation of mercuric triiodide in sperm whale met-aquo myoglobin.
    La Mar GN; Budd DL
    Biochim Biophys Acta; 1979 Dec; 581(2):201-9. PubMed ID: 518909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of carp metmyoglobin unfolding.
    Holladay LA
    Comp Biochem Physiol B; 1986; 83(2):365-70. PubMed ID: 3956157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.