BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34769435)

  • 1. Screening and Molecular Identification of Bacteria from the Midgut of
    Skowronek M; Sajnaga E; Kazimierczak W; Lis M; Wiater A
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A
    Mollah MMI; Kim Y
    BMC Microbiol; 2020 Nov; 20(1):359. PubMed ID: 33228536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entomopathogenic nematodes and their symbiotic bacteria: from genes to field uses.
    Tarasco E; Fanelli E; Salvemini C; El-Khoury Y; Troccoli A; Vovlas A; De Luca F
    Front Insect Sci; 2023; 3():1195254. PubMed ID: 38469514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fitness costs of symbiont switching using entomopathogenic nematodes as a model.
    McMullen JG; Peterson BF; Forst S; Blair HG; Stock SP
    BMC Evol Biol; 2017 Apr; 17(1):100. PubMed ID: 28412935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term persistence of Yersinia pseudotuberculosis in entomopathogenic nematodes.
    Gengler S; Laudisoit A; Batoko H; Wattiau P
    PLoS One; 2015; 10(1):e0116818. PubMed ID: 25635766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel insecticidal toxins from nematode-symbiotic bacteria.
    ffrench-Constant RH; Bowen DJ
    Cell Mol Life Sci; 2000 May; 57(5):828-33. PubMed ID: 10892346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Previously unrecognized stages of species-specific colonization in the mutualism between Xenorhabdus bacteria and Steinernema nematodes.
    Chaston JM; Murfin KE; Heath-Heckman EA; Goodrich-Blair H
    Cell Microbiol; 2013 Sep; 15(9):1545-59. PubMed ID: 23480552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entomopathogenic pseudomonads can share an insect host with entomopathogenic nematodes and their mutualistic bacteria.
    Zwyssig M; Spescha A; Patt T; Belosevic A; Machado RAR; Regaiolo A; Keel C; Maurhofer M
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38381653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Xenorhabdus bovienii bacterial strain genomes reveals diversity in symbiotic functions.
    Murfin KE; Whooley AC; Klassen JL; Goodrich-Blair H
    BMC Genomics; 2015 Nov; 16():889. PubMed ID: 26525894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The entomopathogenic nematode Steinernema hermaphroditum is a self-fertilizing hermaphrodite and a genetically tractable system for the study of parasitic and mutualistic symbiosis.
    Cao M; Schwartz HT; Tan CH; Sternberg PW
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34791196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary Screening on Antibacterial Crude Secondary Metabolites Extracted from Bacterial Symbionts and Identification of Functional Bioactive Compounds by FTIR, HPLC and Gas Chromatography-Mass Spectrometry.
    Chandrakasan G; García-Trejo JF; Feregrino-Pérez AA; Aguirre-Becerra H; García ER; Nieto-Ramírez MI
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic toolbox for Photorhabdus and Xenorhabdus: pSEVA based heterologous expression systems and CRISPR/Cpf1 based genome editing for rapid natural product profiling.
    Rill A; Zhao L; Bode HB
    Microb Cell Fact; 2024 Apr; 23(1):98. PubMed ID: 38561780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bacterial community of entomophilic nematodes and host beetles.
    Koneru SL; Salinas H; Flores GE; Hong RL
    Mol Ecol; 2016 May; 25(10):2312-24. PubMed ID: 26992100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LuxS-dependent AI-2 production is not involved in global regulation of natural product biosynthesis in
    Heinrich AK; Hirschmann M; Neubacher N; Bode HB
    PeerJ; 2017; 5():e3471. PubMed ID: 28663937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural products from Xenorhabdus and Photorhabdus show promise as biolarvicides against Aedes albopictus.
    Touray M; Ulug D; Gulsen SH; Cimen H; Hazir C; Bode HB; Hazir S
    Pest Manag Sci; 2024 Apr; ():. PubMed ID: 38619291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests.
    Castagnola A; Stock SP
    Insects; 2014 Jan; 5(1):139-66. PubMed ID: 24634779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabclavine diversity in
    Wenski SL; Cimen H; Berghaus N; Fuchs SW; Hazir S; Bode HB
    Beilstein J Org Chem; 2020; 16():956-965. PubMed ID: 32461774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histopathological effects of the Yen-Tc toxin complex from Yersinia entomophaga MH96 (Enterobacteriaceae) on the Costelytra zealandica (Coleoptera: Scarabaeidae) larval midgut.
    Marshall SD; Hares MC; Jones SA; Harper LA; Vernon JR; Harland DP; Jackson TA; Hurst MR
    Appl Environ Microbiol; 2012 Jul; 78(14):4835-47. PubMed ID: 22544254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriocin-mediated interactions within and between coexisting species.
    Hawlena H; Bashey F; Lively CM
    Ecol Evol; 2012 Oct; 2(10):2521-6. PubMed ID: 23145336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genome sequence of the Summer Chafer,
    Boyes D; Crowley LM; Holland PWH; ; ; ; ; ; ;
    Wellcome Open Res; 2024; 9():138. PubMed ID: 38784435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.