These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34770130)

  • 21. [Spatio-temporal variation of NPP from 1999 to 2015 in Zoige grassland wetland, China].
    Guo B; Wang S; Wang MT
    Ying Yong Sheng Tai Xue Bao; 2020 Feb; 31(2):424-432. PubMed ID: 32476334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response of net primary production to land use and land cover change in mainland China since the late 1980s.
    Li J; Wang Z; Lai C; Wu X; Zeng Z; Chen X; Lian Y
    Sci Total Environ; 2018 Oct; 639():237-247. PubMed ID: 29787907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing the spatial occupation and ecological impact of human activities in Chengguan district, Lhasa city, Tibetan Plateau.
    Xu L; Xu Y; Duan J; Wang Y; Yang H
    Sci Rep; 2024 Mar; 14(1):6967. PubMed ID: 38521805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of urban expansion on vegetation: The case of China (2000-2018).
    Yang K; Sun W; Luo Y; Zhao L
    J Environ Manage; 2021 Aug; 291():112598. PubMed ID: 33965709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unraveling land system vulnerability to rapid urbanization: An indicator-based vulnerability assessment for Wuhan, China.
    Li X; Wang Y; Song Y
    Environ Res; 2022 Aug; 211():112981. PubMed ID: 35231459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis for the Interaction Relationship between Urbanization and Ecological Security: A Case Study in Wuhan City Circle of China.
    Chai J; Wang Z; Yu C
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analyzing the spatiotemporal carbon change mechanism: a land-based carbon flow network (CFN) for cities.
    Cui X; Li S
    Environ Sci Pollut Res Int; 2023 May; 30(23):63882-63898. PubMed ID: 37059951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling climate change impacts on regional net primary productivity in Turkey.
    Berberoglu S; Donmez C; Cilek A
    Environ Monit Assess; 2021 Apr; 193(5):242. PubMed ID: 33818693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015.
    Jiang H; Xu X; Guan M; Wang L; Huang Y; Jiang Y
    Sci Total Environ; 2020 May; 718():134871. PubMed ID: 31839307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying the contributions of climate change and human activities to vegetation dynamic in China based on multiple indices.
    Liu Y; Liu H; Chen Y; Gang C; Shen Y
    Sci Total Environ; 2022 Sep; 838(Pt 4):156553. PubMed ID: 35690202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impacts of urbanization on ecosystem carbon cycle: a case study of land use change in Tianjin metropolitan area.
    Gao Y; Tian G; Shi X; Lin T
    Environ Monit Assess; 2024 Jul; 196(8):762. PubMed ID: 39052055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the impacts of urban sprawl on net primary productivity using fusion of Landsat and MODIS data.
    Yan Y; Liu X; Wang F; Li X; Ou J; Wen Y; Liang X
    Sci Total Environ; 2018 Feb; 613-614():1417-1429. PubMed ID: 29898508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatio-temporal pattern of urban vegetation carbon sink and driving mechanisms of human activities in Huaibei, China.
    Yang H; Chen W
    Environ Sci Pollut Res Int; 2022 May; 29(21):31957-31971. PubMed ID: 35013973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China.
    Yu H; Bian Z; Mu S; Yuan J; Chen F
    Int J Environ Res Public Health; 2020 Jul; 17(13):. PubMed ID: 32640654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of urban growth effects on green space and surface temperature in Doon Valley, Uttarakhand, India.
    Jana C; Mandal D; Shrimali SS; Alam NM; Kumar R; Sena DR; Kaushal R
    Environ Monit Assess; 2020 Mar; 192(4):257. PubMed ID: 32236771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of climate change and human activities on gross primary productivity in the Heihe River Basin, China.
    Shi X; Shi M; Zhang N; Wu M; Ding H; Li Y; Chen F
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4230-4244. PubMed ID: 35965299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic Changes of Net Primary Productivity and Associated Urban Growth Driving Forces in Guangzhou City, China.
    Wu Y; Wu Z; Liu X
    Environ Manage; 2020 Jun; 65(6):758-773. PubMed ID: 32152672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial and temporal variations of net ecosystem productivity in Xinjiang Autonomous Region, China based on remote sensing.
    Lu X; Chen Y; Sun Y; Xu Y; Xin Y; Mo Y
    Front Plant Sci; 2023; 14():1146388. PubMed ID: 36866372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of climate factors and human activities on net primary productivity in Xinjiang.
    Jiang Y; Guo J; Peng Q; Guan Y; Zhang Y; Zhang R
    Int J Biometeorol; 2020 May; 64(5):765-777. PubMed ID: 31955263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Urban spring phenology in the middle temperate zone of China: dynamics and influence factors.
    Liang S; Shi P; Li H
    Int J Biometeorol; 2016 Apr; 60(4):531-44. PubMed ID: 26272052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.