BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1103 related articles for article (PubMed ID: 34770274)

  • 1. Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters.
    Peng K; Tang Z; Dong L; Sun D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
    Adamidi ES; Mitsis K; Nikita KS
    Comput Struct Biotechnol J; 2021; 19():2833-2850. PubMed ID: 34025952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms.
    Maniruzzaman M; Jahanur Rahman M; Ahammed B; Abedin MM; Suri HS; Biswas M; El-Baz A; Bangeas P; Tsoulfas G; Suri JS
    Comput Methods Programs Biomed; 2019 Jul; 176():173-193. PubMed ID: 31200905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction and Diagnosis of Breast Cancer Using Machine and Modern Deep Learning Models.
    Devi S; Kaul Ghanekar R; Pande JA; Dumbre D; Chavan R; Gupta H
    Asian Pac J Cancer Prev; 2024 Mar; 25(3):1077-1085. PubMed ID: 38546090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of machine learning approaches for radioisotope identification using NaI(TI) gamma-ray spectrum.
    Qi S; Zhao W; Chen Y; Chen W; Li J; Zhao H; Xiao W; Ai X; Zhang K; Wang S
    Appl Radiat Isot; 2022 Aug; 186():110212. PubMed ID: 35569263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Machine Learning Algorithms for Heartbeat Detection Based on Accelerometric Signals Produced by a Smart Bed.
    Hoang ML; Matrella G; Ciampolini P
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison and validation of injury risk classifiers for advanced automated crash notification systems.
    Kusano K; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S126-33. PubMed ID: 25307377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Support Vector Machine, Naïve Bayes and Logistic Regression for Assessing the Necessity for Coronary Angiography.
    Golpour P; Ghayour-Mobarhan M; Saki A; Esmaily H; Taghipour A; Tajfard M; Ghazizadeh H; Moohebati M; Ferns GA
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing Multiagent E-Learning System-Based Machine Learning and Feature Selection Techniques.
    Hessen SH; Abdul-Kader HM; Khedr AE; Salem RK
    Comput Intell Neurosci; 2022; 2022():2941840. PubMed ID: 35140765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods.
    Taghizadeh E; Heydarheydari S; Saberi A; JafarpoorNesheli S; Rezaeijo SM
    BMC Bioinformatics; 2022 Oct; 23(1):410. PubMed ID: 36183055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
    Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M
    Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microseismic records classification using capsule network with limited training samples in underground mining.
    Peng P; He Z; Wang L; Jiang Y
    Sci Rep; 2020 Aug; 10(1):13925. PubMed ID: 32811883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents.
    Wani MA; Roy KK
    Mol Divers; 2022 Jun; 26(3):1345-1356. PubMed ID: 34110578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of K562 Cells Functional Inhibitors Based on Machine Learning Approaches.
    Zhang Y; Han Z; Gao Q; Bai X; Zhang C; Hou H
    Curr Pharm Des; 2019; 25(40):4296-4302. PubMed ID: 31696803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning-based treatment prediction model using whole genome variants of hepatitis C virus.
    Haga H; Sato H; Koseki A; Saito T; Okumoto K; Hoshikawa K; Katsumi T; Mizuno K; Nishina T; Ueno Y
    PLoS One; 2020; 15(11):e0242028. PubMed ID: 33152046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wrapper method for feature selection to classify cardiac arrhythmia.
    Mustaqeem A; Anwar SM; Majid M; Khan AR
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3656-3659. PubMed ID: 29060691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques.
    Sahu R; Dash SR; Cacha LA; Poznanski RR; Parida S
    J Integr Neurosci; 2020 Mar; 19(1):1-9. PubMed ID: 32259881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of explainable machine-learning models for carotid atherosclerosis early screening.
    Yun K; He T; Zhen S; Quan M; Yang X; Man D; Zhang S; Wang W; Han X
    J Transl Med; 2023 May; 21(1):353. PubMed ID: 37246225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.