These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34770281)

  • 1. Comparison of Decision Tree and Long Short-Term Memory Approaches for Automated Foot Strike Detection in Lower Extremity Amputee Populations.
    Juneau P; Baddour N; Burger H; Bavec A; Lemaire ED
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amputee Fall Risk Classification Using Machine Learning and Smartphone Sensor Data from 2-Minute and 6-Minute Walk Tests.
    Juneau P; Baddour N; Burger H; Bavec A; Lemaire ED
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated step detection with 6-minute walk test smartphone sensors signals for fall risk classification in lower limb amputees.
    Juneau P; Lemaire ED; Bavec A; Burger H; Baddour N
    PLOS Digit Health; 2022 Aug; 1(8):e0000088. PubMed ID: 36812591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fall risk classification for people with lower extremity amputations using random forests and smartphone sensor features from a 6-minute walk test.
    Daines KJF; Baddour N; Burger H; Bavec A; Lemaire ED
    PLoS One; 2021; 16(4):e0247574. PubMed ID: 33901209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fall-Risk Classification in Amputees Using Smartphone Sensor Based Features in Turns.
    Daines KJF; Baddour N; Burger H; Bavec A; Lemaire ED
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4175-4178. PubMed ID: 33018917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L Test Subtask Segmentation for Lower-Limb Amputees Using a Random Forest Algorithm.
    McCreath Frangakis AL; Lemaire ED; Burger H; Baddour N
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39124000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower-limb amputee recovery response to an imposed error in mediolateral foot placement.
    Segal AD; Klute GK
    J Biomech; 2014 Sep; 47(12):2911-8. PubMed ID: 25145315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding responses to gait instability from plantar pressure measurement and the relationship to balance and mobility in lower-limb amputees.
    Howcroft J; Lemaire ED; Kofman J; Kendell C
    Clin Biomech (Bristol); 2016 Feb; 32():241-8. PubMed ID: 26651474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications.
    Shawen N; Lonini L; Mummidisetty CK; Shparii I; Albert MV; Kording K; Jayaraman A
    JMIR Mhealth Uhealth; 2017 Oct; 5(10):e151. PubMed ID: 29021127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower-limb amputee ankle and hip kinetic response to an imposed error in mediolateral foot placement.
    Segal AD; Shofer JB; Klute GK
    J Biomech; 2015 Nov; 48(15):3982-3988. PubMed ID: 26475221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel algorithm for a smartphone-based 6-minute walk test application: algorithm, application development, and evaluation.
    Capela NA; Lemaire ED; Baddour N
    J Neuroeng Rehabil; 2015 Feb; 12():19. PubMed ID: 25889112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait Synergy Analysis and Modeling on Amputees and Stroke Patients for Lower Limb Assistive Devices.
    Liang FY; Gao F; Cao J; Law SW; Liao WH
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hip recovery strategy used by below-knee amputees following mediolateral foot perturbations.
    Miller SE; Segal AD; Klute GK; Neptune RR
    J Biomech; 2018 Jul; 76():61-67. PubMed ID: 29887363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables.
    Sherratt F; Plummer A; Iravani P
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medical Specialty Recommendations by an Artificial Intelligence Chatbot on a Smartphone: Development and Deployment.
    Lee H; Kang J; Yeo J
    J Med Internet Res; 2021 May; 23(5):e27460. PubMed ID: 33882012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trans-femoral amputee gait: socket-pelvis constraints and compensation strategies.
    Rabuffetti M; Recalcati M; Ferrarin M
    Prosthet Orthot Int; 2005 Aug; 29(2):183-92. PubMed ID: 16281727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of foot placement strategies of transtibial amputees and able-bodied subjects during stair ambulation.
    Ramstrand N; Nilsson KA
    Prosthet Orthot Int; 2009 Dec; 33(4):348-55. PubMed ID: 19961296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maintaining stable transtibial amputee gait on level and simulated uneven conditions in a virtual environment.
    Sinitski EH; Lemaire ED; Baddour N; Besemann M; Dudek N; Hebert JS
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):40-48. PubMed ID: 31349766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals.
    Ng G; Andrysek J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.