These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34770334)
1. Inquiry into the Temperature Changes of Rock Massif Used in Energy Production in Relation to Season. Klempa M; Latal J; Grafova B; Porzer MM; Vrtek M; Kunz A; Siska P Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770334 [TBL] [Abstract][Full Text] [Related]
2. Distributed Thermal Response Multi-Source Modeling to Evaluate Heterogeneous Subsurface Properties. Liu H; Stumpf AJ; Lin YF; Liu X Ground Water; 2023 Mar; 61(2):224-236. PubMed ID: 34859432 [TBL] [Abstract][Full Text] [Related]
3. Calibration and Uncertainty Quantification for Single-Ended Raman-Based Distributed Temperature Sensing: Case Study in a 800 m Deep Coaxial Borehole Heat Exchanger. Mazzotti Pallard W; Lazzarotto A; Acuña J; Palm B Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420665 [TBL] [Abstract][Full Text] [Related]
4. Impact of operational temperature changes and freeze-thaw cycles on the hydraulic conductivity of borehole heat exchangers. Kupfernagel JH; Hesse JC; Schedel M; Welsch B; Anbergen H; Müller L; Sass I Geotherm Energy (Heidelb); 2021; 9(1):24. PubMed ID: 38624793 [TBL] [Abstract][Full Text] [Related]
5. Coupling a Borehole Thermal Model and MT3DMS to Simulate Dynamic Ground Source Heat Pump Efficiency. Zong Y; Valocchi AJ; Lin YF Ground Water; 2023 Mar; 61(2):237-244. PubMed ID: 34913479 [TBL] [Abstract][Full Text] [Related]
6. Impacts of hydrogeological characters of fractured rock on thermodynamic performance of ground-coupled heat pump. Zou H; Pei P; Zhang J PLoS One; 2021; 16(5):e0252056. PubMed ID: 34038478 [TBL] [Abstract][Full Text] [Related]
7. Analysis on heat transfer performance of coaxial borehole heat exchanger in a layered subsurface with groundwater. He X; Li J; Chen Y; Niu B Heliyon; 2024 Sep; 10(18):e37442. PubMed ID: 39309901 [TBL] [Abstract][Full Text] [Related]
8. A Design Tool for Solar Thermal Remediation Using Borehole Heat Exchangers. Ornelles AD; Falta RW; Divine CE Ground Water; 2023 Mar; 61(2):245-254. PubMed ID: 36250992 [TBL] [Abstract][Full Text] [Related]
9. Energo- and exergo-technical assessment of ground-source heat pump systems for geothermal energy production from underground mines. Amiri L; Madadian E; Hassani FP Environ Technol; 2019 Nov; 40(27):3534-3546. PubMed ID: 29806558 [TBL] [Abstract][Full Text] [Related]
10. Borehole Heat Exchangers-Addressing the Application Gap with Groundwater Science. Schincariol RA; Raymond J Ground Water; 2023 Mar; 61(2):163-170. PubMed ID: 33774814 [TBL] [Abstract][Full Text] [Related]
11. Free Convection and Heat Transfer in Porous Ground Massif during Ground Heat Exchanger Operation. Basok B; Davydenko B; Koshlak H; Novikov V Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888311 [TBL] [Abstract][Full Text] [Related]
12. Novel wireless sensor system for dynamic characterization of borehole heat exchangers. Martos J; Montero Á; Torres J; Soret J; Martínez G; García-Olcina R Sensors (Basel); 2011; 11(7):7082-94. PubMed ID: 22164005 [TBL] [Abstract][Full Text] [Related]
13. Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling. Saito T; Hamamoto S; Ueki T; Ohkubo S; Moldrup P; Kawamoto K; Komatsu T Water Res; 2016 May; 94():120-127. PubMed ID: 26938497 [TBL] [Abstract][Full Text] [Related]
14. Applicability of ground source heat pumps as a bioremediation-enhancing technology for monoaromatic hydrocarbon contaminants. Roohidehkordi I; Krol MM Sci Total Environ; 2021 Jul; 778():146235. PubMed ID: 33721653 [TBL] [Abstract][Full Text] [Related]
15. Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers. Dehkordi SE; Schincariol RA; Olofsson B Ground Water; 2015; 53(4):558-71. PubMed ID: 25227154 [TBL] [Abstract][Full Text] [Related]
16. Reconstruction of the thermal environment evolution in urban areas from underground temperature distribution. Yamano M; Goto S; Miyakoshi A; Hamamoto H; Lubis RF; Monyrath V; Taniguchi M Sci Total Environ; 2009 Apr; 407(9):3120-8. PubMed ID: 19091386 [TBL] [Abstract][Full Text] [Related]
17. Impacts of underground climate change on urban geothermal potential: Lessons learnt from a case study in London. Bidarmaghz A; Choudhary R; Narsilio G; Soga K Sci Total Environ; 2021 Jul; 778():146196. PubMed ID: 33714806 [TBL] [Abstract][Full Text] [Related]
18. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method. Leyde BP; Klein SA; Nellis GF; Skye H Geothermics; 2017 Mar; 66():174-182. PubMed ID: 28785125 [TBL] [Abstract][Full Text] [Related]
19. Heat exchange characteristics of underground and pavement buried pipes for bridge deck heating conditions. Zheng X; Song Z; Ding Y PLoS One; 2024; 19(5):e0298077. PubMed ID: 38743764 [TBL] [Abstract][Full Text] [Related]
20. Thermal Characteristics of Borehole Stability Drilling in Hot Dry Rock. Zhu Z; Wang C; Guan Z; Lei W ACS Omega; 2021 Jul; 6(29):19026-19037. PubMed ID: 34337241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]