These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 34770349)

  • 21. Bandwidth Broadening of Piezoelectric Energy Harvesters Using Arrays of a Proposed Piezoelectric Cantilever Structure.
    Salem MS; Ahmed S; Shaker A; Alshammari MT; Al-Dhlan KA; Alanazi A; Saeed A; Abouelatta M
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Broadband Vibration-Based Energy Harvesting for Wireless Sensor Applications Using Frequency Upconversion.
    Li J; Ouro-Koura H; Arnow H; Nowbahari A; Galarza M; Obispo M; Tong X; Azadmehr M; Halvorsen E; Hella MM; Tichy JA; Borca-Tasciuc DA
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design optimization of PVDF-based piezoelectric energy harvesters.
    Song J; Zhao G; Li B; Wang J
    Heliyon; 2017 Sep; 3(9):e00377. PubMed ID: 28948235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices.
    Aceti P; Rosso M; Ardito R; Pienazza N; Nastro A; BaĆ¹ M; Ferrari M; Rouvala M; Ferrari V; Corigliano A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. WearETE: A Scalable Wearable E-Textile Triboelectric Energy Harvesting System for Human Motion Scavenging.
    Li X; Sun Y
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29149035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Piezoelectric Energy Harvester Technologies: Synthesis, Mechanisms, and Multifunctional Applications.
    He Q; Briscoe J
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29491-29520. PubMed ID: 38739105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wearable Exoskeleton System for Energy Harvesting and Angle Sensing Based on a Piezoelectric Cantilever Generator Array.
    Hu B; Xue J; Jiang D; Tan P; Wang Y; Liu M; Yu H; Zou Y; Li Z
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36622-36632. PubMed ID: 35924818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crack Protective Layered Architecture of Lead-Free Piezoelectric Energy Harvester in Bistable Configuration.
    Rubes O; Machu Z; Sevecek O; Hadas Z
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy Solutions for Wearable Sensors: A Review.
    Rong G; Zheng Y; Sawan M
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34072770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Piezoelectric Energy Harvesting from Rotational Motion to Power Industrial Maintenance Sensors.
    Palosaari J; Juuti J; Jantunen H
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimized multi-frequency nonlinear broadband piezoelectric energy harvester designs.
    Elgamal MA; Elgamal H; Kouritem SA
    Sci Rep; 2024 May; 14(1):11401. PubMed ID: 38762520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization.
    Mei J; Fan Q; Li L; Chen D; Xu L; Dai Q; Liu Q
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contributed Review: Recent developments in acoustic energy harvesting for autonomous wireless sensor nodes applications.
    Khan FU; Khattak MU
    Rev Sci Instrum; 2016 Feb; 87(2):021501. PubMed ID: 26931827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy Autonomous Sweat-Based Wearable Systems.
    Manjakkal L; Yin L; Nathan A; Wang J; Dahiya R
    Adv Mater; 2021 Sep; 33(35):e2100899. PubMed ID: 34247412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters.
    Thainiramit P; Yingyong P; Isarakorn D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EHDC: An Energy Harvesting Modeling and Profiling Platform for Body Sensor Networks.
    Fan D; Lopez Ruiz L; Gong J; Lach J
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):33-39. PubMed ID: 28767376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Online Condition Monitoring of Rotating Machines by Self-Powered Piezoelectric Transducer from Real-Time Experimental Investigations.
    Khazaee M; Rosendahl LA; Rezania A
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.