These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 34770395)

  • 1. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Learning to Relearning: A Framework for Diminishing Bias in Social Robot Navigation.
    Hurtado JV; Londoño L; Valada A
    Front Robot AI; 2021; 8():650325. PubMed ID: 33842558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.
    de Greeff J; Belpaeme T
    PLoS One; 2015; 10(9):e0138061. PubMed ID: 26422143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Social Type-Aware Navigation Framework for Mobile Robots in Human-Shared Environments.
    Kang S; Yang S; Kwak D; Jargalbaatar Y; Kim D
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Q-network for social robotics using emotional social signals.
    Belo JPR; Azevedo H; Ramos JJG; Romero RAF
    Front Robot AI; 2022; 9():880547. PubMed ID: 36226257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotion with Pedestrian Aware from Perception Sensor by Pavement Sweeping Reconfigurable Robot.
    Yi L; Le AV; Ramalingam B; Hayat AA; Elara MR; Minh THQ; Gómez BF; Wen LK
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33802434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive navigation under a fuzzy rules-based scheme and reinforcement learning for mobile robots.
    López-Lozada E; Rubio-Espino E; Sossa-Azuela JH; Ponce-Ponce VH
    PeerJ Comput Sci; 2021; 7():e556. PubMed ID: 34150998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Navigation Probability Map in Pedestrian Dynamic Environment Based on Influencer Recognition Model.
    Qiao Z; Zhao L; Jiang X; Gu L; Li R
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assistive Navigation Using Deep Reinforcement Learning Guiding Robot With UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People.
    Lu CL; Liu ZY; Huang JT; Huang CI; Wang BH; Chen Y; Wu NH; Wang HC; Giarré L; Kuo PY
    Front Robot AI; 2021; 8():654132. PubMed ID: 34239900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structured Kernel Subspace Learning for Autonomous Robot Navigation.
    Kim E; Choi S; Oh S
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging Requirements, Planning, and Evaluation: A Review of Social Robot Navigation.
    Karwowski J; Szynkiewicz W; Niewiadomska-Szynkiewicz E
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning.
    Chen G; Yao S; Ma J; Pan L; Chen Y; Xu P; Ji J; Chen X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.