These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34770484)

  • 1. Modeling Pulsed High-Power Spikes in Tunable HV Capacitive Drivers of Piezoelectric Wideband Transducers to Improve Dynamic Range and SNR for Ultrasonic Imaging and NDE.
    Ramos A; Ruiz A; Riera E
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement in transient piezoelectric responses of NDE transceivers using selective damping and tuning networks.
    Ramos A; San Emeterio JL; Sanz PT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):826-35. PubMed ID: 18238615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biasing of Capacitive Micromachined Ultrasonic Transducers.
    Caliano G; Matrone G; Savoia AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):402-413. PubMed ID: 27810808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducers.
    Øygard SH; Ommen ML; Tomov BG; Diederichsen SE; Thomsen EV; Stuart MB; Larsen NB; Jensen JA
    J Acoust Soc Am; 2023 Mar; 153(3):1887. PubMed ID: 37002075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.
    Lewis GK; Olbricht WL
    Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance ultrasonic transducer based on PZT piezoelectric ceramic for high-temperature NDE.
    Zou K; Yue Q; Li J; Zhang W; Liang R; Zhou Z
    Ultrasonics; 2023 Jul; 132():107013. PubMed ID: 37116397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wideband acoustic activation and detection of droplet vaporization events using a capacitive micromachined ultrasonic transducer.
    Novell A; Arena CB; Oralkan O; Dayton PA
    J Acoust Soc Am; 2016 Jun; 139(6):3193. PubMed ID: 27369143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Adaptive Element-Level Impedance-Matched ASIC With Improved Acoustic Reflectivity for Medical Ultrasound Imaging.
    Rezvanitabar A; Kilinc MS; Tekes C; Arkan EF; Ghovanloo M; Degertekin FL
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):492-501. PubMed ID: 35687616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second harmonic and subharmonic for non-linear wideband contrast imaging using a capacitive micromachined ultrasonic transducer array.
    Novell A; Escoffre JM; Bouakaz A
    Ultrasound Med Biol; 2013 Aug; 39(8):1500-12. PubMed ID: 23743105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic coupling in capacitive microfabricated ultrasonic transducers: modeling and experiments.
    Caronti A; Savoia A; Caliano G; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2220-34. PubMed ID: 16463488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging.
    Park J; Hu C; Li X; Zhou Q; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):825-32. PubMed ID: 22547294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Wearable Ultrasonic Neurostimulator-Part II: A 2D CMUT Phased Array System With a Flip-Chip Bonded ASIC.
    Seok C; Adelegan OJ; Biliroglu AO; Yamaner FY; Oralkan O
    IEEE Trans Biomed Circuits Syst; 2021 Aug; 15(4):705-718. PubMed ID: 34398764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Capacitive Micromachined Ultrasonic Transducers: A Comprehensive Review.
    Joseph J; Ma B; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):456-467. PubMed ID: 34520356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface micromachined capacitive ultrasonic transducers.
    Ladabaum I; Jin X; Soh HT; Atalar A; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):678-90. PubMed ID: 18244219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CMUT probe for medical ultrasonography: from microfabrication to system integration.
    Savoia AS; Calianov G; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1127-38. PubMed ID: 22711408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward virtual biopsy through an all fiber optic ultrasonic miniaturized transducer: a proposal.
    Acquafresca A; Biagi E; Masotti L; Menichelli D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1325-35. PubMed ID: 14609072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling NDT piezoelectric ultrasonic transmitters.
    San Emeterio JL; Ramos A; Sanz PT; Ruíz A; Azbaid A
    Ultrasonics; 2004 Apr; 42(1-9):277-81. PubMed ID: 15047298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-Low-Voltage Capacitive Micromachined Ultrasonic Transducers with Increased Output Pressure Due to Piston-Structured Plates.
    Merbeler F; Wismath S; Haubold M; Bretthauer C; Kupnik M
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass-windowed ultrasound transducers.
    Yddal T; Gilja OH; Cochran S; Postema M; Kotopoulis S
    Ultrasonics; 2016 May; 68():108-19. PubMed ID: 26938326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Ultrasonic Energy Harvesting IC Providing Adjustable Bias Voltage for Pre-Charged CMUT.
    Zhao L; Annayev M; Oralkan O; Jia Y
    IEEE Trans Biomed Circuits Syst; 2022 Oct; 16(5):842-851. PubMed ID: 35671313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.