These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 34770494)
21. Study on inversion method of wall erosion information of on-orbit Hall thruster based on low-frequency oscillation signals and neural networks. Han K; Xie F; Wang Y; Zhang L; Yu M; Wang J; Wang Y; Wan J Heliyon; 2022 Nov; 8(11):e11616. PubMed ID: 36458315 [TBL] [Abstract][Full Text] [Related]
22. Fault Diagnosis of Rotary Machines Using Deep Convolutional Neural Network with Wide Three Axis Vibration Signal Input. Kolar D; Lisjak D; Pająk M; Pavković D Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32707716 [TBL] [Abstract][Full Text] [Related]
23. Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning. Xu G; Liu M; Jiang Z; Söffker D; Shen W Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832449 [TBL] [Abstract][Full Text] [Related]
24. An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data. Liu Y; Yan X; Zhang CA; Liu W Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31810161 [TBL] [Abstract][Full Text] [Related]
25. Fault Identification and Localization of a Time-Frequency Domain Joint Impedance Spectrum of Cables Based on Deep Belief Networks. Wan Q; Li Y; Yuan R; Meng Q; Li X Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679479 [TBL] [Abstract][Full Text] [Related]
26. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals. Zhang W; Peng G; Li C; Chen Y; Zhang Z Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28241451 [TBL] [Abstract][Full Text] [Related]
27. Fault Diagnosis for High-Speed Train Axle-Box Bearing Using Simplified Shallow Information Fusion Convolutional Neural Network. Luo H; Bo L; Peng C; Hou D Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878207 [TBL] [Abstract][Full Text] [Related]
28. A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis. Hoang DT; Tran XT; Van M; Kang HJ Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401511 [TBL] [Abstract][Full Text] [Related]
29. Bearing Fault Diagnosis Using Lightweight and Robust One-Dimensional Convolution Neural Network in the Frequency Domain. Hakim M; Omran AAB; Inayat-Hussain JI; Ahmed AN; Abdellatef H; Abdellatif A; Gheni HM Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957359 [TBL] [Abstract][Full Text] [Related]
30. Multi-Output Classification Based on Convolutional Neural Network Model for Untrained Compound Fault Diagnosis of Rotor Systems with Non-Contact Sensors. Son T; Hong D; Kim B Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991864 [TBL] [Abstract][Full Text] [Related]
31. A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors. Toma RN; Piltan F; Kim JM Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960552 [TBL] [Abstract][Full Text] [Related]
32. Sensor and Actuator Fault Diagnosis for Robot Joint Based on Deep CNN. Pan J; Qu L; Peng K Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34203708 [TBL] [Abstract][Full Text] [Related]
33. A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion. Gong W; Chen H; Zhang Z; Zhang M; Wang R; Guan C; Wang Q Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30970672 [TBL] [Abstract][Full Text] [Related]
34. Underwater Target Signal Classification Using the Hybrid Routing Neural Network. Cheng X; Zhang H Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883803 [TBL] [Abstract][Full Text] [Related]
35. An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis. Li S; Liu G; Tang X; Lu J; Hu J Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28788099 [TBL] [Abstract][Full Text] [Related]
36. Learning Attention Representation with a Multi-Scale CNN for Gear Fault Diagnosis under Different Working Conditions. Yao Y; Zhang S; Yang S; Gui G Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32102405 [TBL] [Abstract][Full Text] [Related]
37. Deep residual neural-network-based robot joint fault diagnosis method. Pan J; Qu L; Peng K Sci Rep; 2022 Oct; 12(1):17158. PubMed ID: 36229502 [TBL] [Abstract][Full Text] [Related]
38. An Unsupervised Deep Feature Learning Model Based on Parallel Convolutional Autoencoder for Intelligent Fault Diagnosis of Main Reducer. Ye Q; Liu C Comput Intell Neurosci; 2021; 2021():8922656. PubMed ID: 34630558 [TBL] [Abstract][Full Text] [Related]
39. Lyapunov matrix-based adaptive resilient control for unmanned marine vehicles with sensor and thruster attacks. Yang X; Hao LY; Xiao Y; Li T ISA Trans; 2024 Oct; 153():70-77. PubMed ID: 39142931 [TBL] [Abstract][Full Text] [Related]
40. A Transfer-Based Convolutional Neural Network Model with Multi-Signal Fusion and Hyperparameter Optimization for Pump Fault Diagnosis. Zhang Z; Tang A; Zhang T Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837036 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]