These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 34770522)
1. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant. Palacín J; Rubies E; Clotet E; Martínez D Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770522 [TBL] [Abstract][Full Text] [Related]
2. Design, Implementation and Validation of the Three-Wheel Holonomic Motion System of the Assistant Personal Robot (APR). Moreno J; Clotet E; Lupiañez R; Tresanchez M; Martínez D; Pallejà T; Casanovas J; Palacín J Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27735857 [TBL] [Abstract][Full Text] [Related]
3. Correction: Palacín et al. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant. Palacín J; Rubies E; Clotet E; Martínez D Sensors (Basel); 2024 Oct; 24(20):. PubMed ID: 39460252 [TBL] [Abstract][Full Text] [Related]
4. Trajectory Tracking Control Method for Omnidirectional Mobile Robot Based on Self-Organizing Fuzzy Neural Network and Preview Strategy. Zhao T; Qin P; Zhong Y Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832615 [TBL] [Abstract][Full Text] [Related]
5. MPC-based high-speed trajectory tracking for 4WIS robot. Liu X; Wang W; Li X; Liu F; He Z; Yao Y; Ruan H; Zhang T ISA Trans; 2022 Apr; 123():413-424. PubMed ID: 34052011 [TBL] [Abstract][Full Text] [Related]
6. Adaptive Trajectory Tracking of Nonholonomic Mobile Robots Using Vision-Based Position and Velocity Estimation. Li L; Liu YH; Jiang T; Wang K; Fang M IEEE Trans Cybern; 2018 Feb; 48(2):571-582. PubMed ID: 28092594 [TBL] [Abstract][Full Text] [Related]
7. Two-dimensional radial laser scanning for circular marker detection and external mobile robot tracking. Teixidó M; Pallejà T; Font D; Tresanchez M; Moreno J; Palacín J Sensors (Basel); 2012 Nov; 12(12):16482-97. PubMed ID: 23443390 [TBL] [Abstract][Full Text] [Related]
8. Construction of a WMR for trajectory tracking control: experimental results. Silva-Ortigoza R; Márquez-Sánchez C; Marcelino-Aranda M; Marciano-Melchor M; Silva-Ortigoza G; Bautista-Quintero R; Ramos-Silvestre ER; Rivera-Díaz JC; Muñoz-Carrillo D ScientificWorldJournal; 2013; 2013():723645. PubMed ID: 23997679 [TBL] [Abstract][Full Text] [Related]
9. Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments. Yang Z; Li J; Yang L; Wang Q; Li P; Xia G Math Biosci Eng; 2023 Jan; 20(1):145-178. PubMed ID: 36650761 [TBL] [Abstract][Full Text] [Related]
10. Predictive Control of the Mobile Robot under the Deep Long-Short Term Memory Neural Network Model. Zheng L Comput Intell Neurosci; 2022; 2022():1835798. PubMed ID: 36188702 [TBL] [Abstract][Full Text] [Related]
11. The Analysis of Trajectory Control of Non-holonomic Mobile Robots Based on Internet of Things Target Image Enhancement Technology and Backpropagation Neural Network. Zhao L; Wang G; Fan X; Li Y Front Neurorobot; 2021; 15():634340. PubMed ID: 33828475 [TBL] [Abstract][Full Text] [Related]
12. Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies. Tagliavini L; Colucci G; Botta A; Cavallone P; Baglieri L; Quaglia G J Intell Robot Syst; 2022; 106(3):57. PubMed ID: 36313936 [TBL] [Abstract][Full Text] [Related]
13. Front and Back Movement Analysis of a Triangle-Structured Three-Wheeled Omnidirectional Mobile Robot by Varying the Angles between Two Selected Wheels. Mohanraj AP; Elango A; Reddy MC ScientificWorldJournal; 2016; 2016():7612945. PubMed ID: 26981585 [TBL] [Abstract][Full Text] [Related]
14. Optimal Trajectory Planning for Wheeled Mobile Robots under Localization Uncertainty and Energy Efficiency Constraints. Zhang X; Huang Y; Rong Y; Li G; Wang H; Liu C Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419009 [TBL] [Abstract][Full Text] [Related]
15. Practical Model for Energy Consumption Analysis of Omnidirectional Mobile Robot. Hou L; Zhou F; Kim K; Zhang L Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33807698 [TBL] [Abstract][Full Text] [Related]
16. Development of a Hybrid Path Planning Algorithm and a Bio-Inspired Control for an Omni-Wheel Mobile Robot. Kim C; Suh J; Han JH Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751685 [TBL] [Abstract][Full Text] [Related]
17. Model Predictive Control of a Novel Wheeled-Legged Planetary Rover for Trajectory Tracking. He J; Sun Y; Yang L; Gao F Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684785 [TBL] [Abstract][Full Text] [Related]
18. Kinematics Calibration and Validation Approach Using Indoor Positioning System for an Omnidirectional Mobile Robot. Popovici AT; Dosoftei CC; Budaciu C Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433187 [TBL] [Abstract][Full Text] [Related]
19. Precision-Driven Multi-Target Path Planning and Fine Position Error Estimation on a Dual-Movement-Mode Mobile Robot Using a Three-Parameter Error Model. Ji J; Zhao JS; Misyurin SY; Martins D Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617117 [TBL] [Abstract][Full Text] [Related]
20. Model-Predictive Control for Omnidirectional Mobile Robots in Logistic Environments Based on Object Detection Using CNNs. Achirei SD; Mocanu R; Popovici AT; Dosoftei CC Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]