These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34770554)

  • 1. Use of Force Feedback Device in a Hybrid Brain-Computer Interface Based on SSVEP, EOG and Eye Tracking for Sorting Items.
    Kubacki A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals.
    Zhou Y; He S; Huang Q; Li Y
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2881-2892. PubMed ID: 32070938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes of EEG phase synchronization and EOG signals along the use of steady state visually evoked potential-based brain computer interface.
    Peng Y; Wang Z; Wong CM; Nan W; Rosa A; Xu P; Wan F; Hu Y
    J Neural Eng; 2020 Jul; 17(4):045006. PubMed ID: 32408272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bipolar-Channel Hybrid Brain-Computer Interface System for Home Automation Control Utilizing Steady-State Visually Evoked Potential and Eye-Blink Signals.
    Yang D; Nguyen TH; Chung WY
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An autonomous hybrid brain-computer interface system combined with eye-tracking in virtual environment.
    Tan Y; Lin Y; Zang B; Gao X; Yong Y; Yang J; Li S
    J Neurosci Methods; 2022 Feb; 368():109442. PubMed ID: 34915046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate.
    Ha J; Park S; Im CH
    Front Neuroinform; 2022; 16():758537. PubMed ID: 35281718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface.
    Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H
    J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Calibration-Free Hybrid Approach Combining SSVEP and EOG for Continuous Control.
    Mai X; Sheng X; Shu X; Ding Y; Zhu X; Meng J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3480-3491. PubMed ID: 37610901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision.
    Zhao X; Wang Z; Zhang M; Hu H
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33784640
    [No Abstract]   [Full Text] [Related]  

  • 15. An online hybrid BCI combining SSVEP and EOG-based eye movements.
    Zhang J; Gao S; Zhou K; Cheng Y; Mao S
    Front Hum Neurosci; 2023; 17():1103935. PubMed ID: 36875236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of high-frequency steady-state visual evoked potentials from below-the-hairline areas for a brain-computer interface based on Depth-of-Field.
    Floriano A; Delisle-Rodriguez D; Diez PF; Bastos-Filho TF
    Comput Methods Programs Biomed; 2020 Feb; 184():105271. PubMed ID: 31881401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSVEP recognition by modeling brain activity using system identification based on Box-Jenkins model.
    Safi SMM; Pooyan M; Motie Nasrabadi A
    Comput Biol Med; 2018 Oct; 101():82-89. PubMed ID: 30114547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a High-speed Mental Spelling System Combining Eye Tracking and SSVEP-based BCI with High Scalability.
    Lin X; Chen Z; Xu K; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6318-6322. PubMed ID: 31947287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vigilance Estimating in SSVEP-Based BCI Using Multimodal Signals.
    Wang K; Qiu S; Wei W; Zhang C; He H; Xu M; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5974-5978. PubMed ID: 34892479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.