These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. A Micro Capacitive Humidity Sensor Based on Al-Mo Electrodes and Polyimide Film. Zhou W; Wei J; Wang L Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000771 [TBL] [Abstract][Full Text] [Related]
46. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes. Lin Y; Lin Q; Liu X; Gao Y; He J; Wang W; Fan Z Nanoscale Res Lett; 2015 Dec; 10(1):495. PubMed ID: 26706687 [TBL] [Abstract][Full Text] [Related]
50. Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm. Sun C; Luo J; Wu L; Zhang J ACS Appl Mater Interfaces; 2010 May; 2(5):1299-302. PubMed ID: 20408596 [TBL] [Abstract][Full Text] [Related]
51. A large electrochemical setup for the anodization of aluminum towards highly ordered arrays of cylindrical nanopores. Assaud L; Bochmann S; Christiansen S; Bachmann J Rev Sci Instrum; 2015 Jul; 86(7):073902. PubMed ID: 26233394 [TBL] [Abstract][Full Text] [Related]
52. Humidity Sensors with Shielding Electrode Under Interdigitated Electrode. Liu H; Wang Q; Sheng W; Wang X; Zhang K; Du L; Zhou J Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736294 [TBL] [Abstract][Full Text] [Related]
53. Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization. Lee W; Kim JC Nanotechnology; 2010 Dec; 21(48):485304. PubMed ID: 21063054 [TBL] [Abstract][Full Text] [Related]
54. Tailoring morphology in free-standing anodic aluminium oxide: control of barrier layer opening down to the sub-10 nm diameter. Gong J; Butler WH; Zangari G Nanoscale; 2010 May; 2(5):778-85. PubMed ID: 20648324 [TBL] [Abstract][Full Text] [Related]
55. The Impact of ZIF-8 Particle Size Control on Low-Humidity Sensor Performance. Kim SJ; Lee J; Bae JS; Lee JW Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334555 [TBL] [Abstract][Full Text] [Related]
56. Humidity and illumination organic semiconductor copper phthalocyanine sensor for environmental monitoring. Karimov KS; Qazi I; Khan TA; Draper PH; Khalid FA; Mahroof-Tahir M Environ Monit Assess; 2008 Jun; 141(1-3):323-8. PubMed ID: 17849229 [TBL] [Abstract][Full Text] [Related]
57. A humidity sensing organic-inorganic composite for environmental monitoring. Ahmad Z; Zafar Q; Sulaiman K; Akram R; Karimov KS Sensors (Basel); 2013 Mar; 13(3):3615-24. PubMed ID: 23493124 [TBL] [Abstract][Full Text] [Related]
58. Capacitive Humidity Sensor Based on Carbon Black/Polyimide Composites. Kim J; Cho JH; Lee HM; Hong SM Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799769 [TBL] [Abstract][Full Text] [Related]
59. Nanoporous dual-electrodes with millimetre extensions: parallelized fabrication and area effects on redox cycling. Hüske M; Offenhäusser A; Wolfrum B Phys Chem Chem Phys; 2014 Jun; 16(23):11609-16. PubMed ID: 24806814 [TBL] [Abstract][Full Text] [Related]
60. Droplet-based interfacial capacitive sensing. Nie B; Xing S; Brandt JD; Pan T Lab Chip; 2012 Mar; 12(6):1110-8. PubMed ID: 22311169 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]