These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. The application of 3D-QSAR studies for novel cannabinoid ligands substituted at the C1' position of the alkyl side chain on the structural requirements for binding to cannabinoid receptors CB1 and CB2. Durdagi S; Kapou A; Kourouli T; Andreou T; Nikas SP; Nahmias VR; Papahatjis DP; Papadopoulos MG; Mavromoustakos T J Med Chem; 2007 Jun; 50(12):2875-85. PubMed ID: 17521177 [TBL] [Abstract][Full Text] [Related]
43. Computational investigation on the binding modes of Rimonabant analogs with CB1 and CB2. Liu C; Yuan C; Wu P; Zhu C; Fang H; Wang L; Fu W Chem Biol Drug Des; 2018 Sep; 92(3):1699-1707. PubMed ID: 29797785 [TBL] [Abstract][Full Text] [Related]
44. Identification of potential PKC inhibitors through pharmacophore designing, 3D-QSAR and molecular dynamics simulations targeting Alzheimer's disease. Iqbal S; Anantha Krishnan D; Gunasekaran K J Biomol Struct Dyn; 2018 Nov; 36(15):4029-4044. PubMed ID: 29182053 [TBL] [Abstract][Full Text] [Related]
45. New QSAR prediction models derived from GPCR CB2-antagonistic triaryl bis-sulfone analogues by a combined molecular morphological and pharmacophoric approach. Chen JZ; Myint KZ; Xie XQ SAR QSAR Environ Res; 2011; 22(5-6):525-44. PubMed ID: 21714749 [TBL] [Abstract][Full Text] [Related]
46. Synthesis, pharmacological evaluation and docking studies of pyrrole structure-based CB2 receptor antagonists. Ragusa G; Gómez-Cañas M; Morales P; Hurst DP; Deligia F; Pazos R; Pinna GA; Fernández-Ruiz J; Goya P; Reggio PH; Jagerovic N; García-Arencibia M; Murineddu G Eur J Med Chem; 2015 Aug; 101():651-67. PubMed ID: 26209834 [TBL] [Abstract][Full Text] [Related]
47. Ligand-Assisted Protein Structure (LAPS): An Experimental Paradigm for Characterizing Cannabinoid-Receptor Ligand-Binding Domains. Janero DR; Korde A; Makriyannis A Methods Enzymol; 2017; 593():217-235. PubMed ID: 28750804 [TBL] [Abstract][Full Text] [Related]
48. Novel tumor necrosis factor-α (TNF-α) inhibitors from small molecule library screening for their therapeutic activity profiles against rheumatoid arthritis using target-driven approaches and binary QSAR models. Zaka M; Abbasi BH; Durdagi S J Biomol Struct Dyn; 2019 Jun; 37(9):2464-2476. PubMed ID: 30047845 [TBL] [Abstract][Full Text] [Related]
49. Synthesis and biological evaluation of ferrocene-based cannabinoid receptor 2 ligands. Sansook S; Tuo W; Bollier M; Barczyk A; Dezitter X; Klupsch F; Leleu-Chavain N; Farce A; Tizzard GJ; Coles SJ; Spencer J; Millet R Future Med Chem; 2018 Mar; 10(6):631-638. PubMed ID: 29419319 [TBL] [Abstract][Full Text] [Related]
50. Ligand- and structure-based in silico studies to identify kinesin spindle protein (KSP) inhibitors as potential anticancer agents. Balakumar C; Ramesh M; Tham CL; Khathi SP; Kozielski F; Srinivasulu C; Hampannavar GA; Sayyad N; Soliman ME; Karpoormath R J Biomol Struct Dyn; 2018 Nov; 36(14):3687-3704. PubMed ID: 29064326 [TBL] [Abstract][Full Text] [Related]
51. Selective Cannabinoid 2 Receptor Agonists as Potential Therapeutic Drugs for the Treatment of Endotoxin-Induced Uveitis. Porter RF; Szczesniak AM; Toguri JT; Gebremeskel S; Johnston B; Lehmann C; Fingerle J; Rothenhäusler B; Perret C; Rogers-Evans M; Kimbara A; Nettekoven M; Guba W; Grether U; Ullmer C; Kelly MEM Molecules; 2019 Sep; 24(18):. PubMed ID: 31540271 [TBL] [Abstract][Full Text] [Related]
52. Deep Learning and Structure-Based Virtual Screening for Drug Discovery against NEK7: A Novel Target for the Treatment of Cancer. Aziz M; Ejaz SA; Zargar S; Akhtar N; Aborode AT; A Wani T; Batiha GE; Siddique F; Alqarni M; Akintola AA Molecules; 2022 Jun; 27(13):. PubMed ID: 35807344 [TBL] [Abstract][Full Text] [Related]
53. Identification of potential dual agonists of FXR and TGR5 using e-pharmacophore based virtual screening. Sindhu T; Srinivasan P Mol Biosyst; 2015 May; 11(5):1305-18. PubMed ID: 25787676 [TBL] [Abstract][Full Text] [Related]
54. Targeting the NF-κB/IκBα complex via fragment-based E-Pharmacophore virtual screening and binary QSAR models. Kanan T; Kanan D; Erol I; Yazdi S; Stein M; Durdagi S J Mol Graph Model; 2019 Jan; 86():264-277. PubMed ID: 30415122 [TBL] [Abstract][Full Text] [Related]
55. First pharmacophore model of CCR3 receptor antagonists and its homology model-assisted, stepwise virtual screening. Jain V; Saravanan P; Arvind A; Mohan CG Chem Biol Drug Des; 2011 May; 77(5):373-87. PubMed ID: 21284830 [TBL] [Abstract][Full Text] [Related]
56. In silico exploration of CB2 receptor agonist in the management of neuroinflammatory conditions by pharmacophore modeling. Bodke S; Joshi N; Alavala RR; Suares D Comput Biol Chem; 2024 Jun; 110():108049. PubMed ID: 38507844 [TBL] [Abstract][Full Text] [Related]
57. Design and synthesis of novel tri-aryl CB2 selective cannabinoid ligands. Bhattacharjee H; Gurley SN; Moore BM Bioorg Med Chem Lett; 2009 Mar; 19(6):1691-3. PubMed ID: 19230659 [TBL] [Abstract][Full Text] [Related]
58. Identification of potential Gly/NMDA receptor antagonists by cheminformatics approach: a combination of pharmacophore modelling, virtual screening and molecular docking studies. Ugale VG; Bari SB SAR QSAR Environ Res; 2016; 27(2):125-45. PubMed ID: 26911562 [TBL] [Abstract][Full Text] [Related]
59. Refined pharmacophore features for virtual screening of human thromboxane A2 receptor antagonists. Hu B; Joseph J; Geng X; Wu Y; Suleiman MR; Liu X; Shi J; Wang X; He Z; Wang J; Cheng M Comput Biol Chem; 2020 Jun; 86():107249. PubMed ID: 32199335 [TBL] [Abstract][Full Text] [Related]
60. Discovery of Novel DPP-IV Inhibitors as Potential Candidates for the Treatment of Type 2 Musoev A; Numonov S; You Z; Gao H Molecules; 2019 Aug; 24(16):. PubMed ID: 31394858 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]