BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34771152)

  • 1. Biosynthesis of Tetrapyrrole Cofactors by Bacterial Community Inhabiting Porphyrine-Containing Shale Rock (Fore-Sudetic Monocline).
    Stasiuk R; Krucoń T; Matlakowska R
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postdiagenetic Bacterial Transformation of Nickel and Vanadyl Sedimentary Porphyrins of Organic-Rich Shale Rock (Fore-Sudetic Monocline, Poland).
    Stasiuk R; Matlakowska R
    Front Microbiol; 2021; 12():772007. PubMed ID: 34917054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sedimentary Cobalt Protoporphyrin as a Potential Precursor of Prosthetic Heme Group for Bacteria Inhabiting Fossil Organic Matter-Rich Shale Rock.
    Stasiuk R; Matlakowska R
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postdiagenetic Changes in Kerogen Properties and Type by Bacterial Oxidation and Dehydrogenation.
    Wilamowska A; Koblowska M; Matlakowska R
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of Kupferschiefer black shale organic matter (Fore-Sudetic Monocline, Poland) by indigenous microorganisms.
    Matlakowska R; Sklodowska A
    Chemosphere; 2011 May; 83(9):1255-61. PubMed ID: 21444104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d 1.
    Bali S; Palmer DJ; Schroeder S; Ferguson SJ; Warren MJ
    Cell Mol Life Sci; 2014 Aug; 71(15):2837-63. PubMed ID: 24515122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioweathering of Kupferschiefer black shale (Fore-Sudetic Monocline, SW Poland) by indigenous bacteria: implication for dissolution and precipitation of minerals in deep underground mine.
    Matlakowska R; Skłodowska A; Nejbert K
    FEMS Microbiol Ecol; 2012 Jul; 81(1):99-110. PubMed ID: 22329644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfate-reducing bacteria reveal a new branch of tetrapyrrole metabolism.
    Lobo SA; Warren MJ; Saraiva LM
    Adv Microb Physiol; 2012; 61():267-95. PubMed ID: 23046956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular compounds produced by bacterial consortium promoting elements mobilization from polymetallic Kupferschiefer black shale (Fore-Sudetic Monocline, Poland).
    Włodarczyk A; Stasiuk R; Skłodowska A; Matlakowska R
    Chemosphere; 2015 Mar; 122():273-279. PubMed ID: 25522852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetrapyrrole biosynthesis in higher plants.
    Tanaka R; Tanaka A
    Annu Rev Plant Biol; 2007; 58():321-46. PubMed ID: 17227226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of copper from Kupferschiefer black shale (Fore-Sudetic Monocline, Poland) by yeast Rhodotorula mucilaginosa LM9.
    Rajpert L; Skłodowska A; Matlakowska R
    Chemosphere; 2013 May; 91(9):1257-65. PubMed ID: 23490182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tetrapyrrole biosynthetic pathway and its regulation in Rhodobacter capsulatus.
    Zappa S; Li K; Bauer CE
    Adv Exp Med Biol; 2010; 675():229-50. PubMed ID: 20532744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles.
    Senge MO; MacGowan SA; O'Brien JM
    Chem Commun (Camb); 2015 Dec; 51(96):17031-63. PubMed ID: 26482230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis.
    Stroupe ME; Leech HK; Daniels DS; Warren MJ; Getzoff ED
    Nat Struct Biol; 2003 Dec; 10(12):1064-73. PubMed ID: 14595395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the delicate balance of tetrapyrrole biosynthesis.
    Yin L; Bauer CE
    Philos Trans R Soc Lond B Biol Sci; 2013 Jul; 368(1622):20120262. PubMed ID: 23754814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of the heme requirement for growth of Bacteroides ruminicola.
    Caldwell DR; White DC; Bryant MP; Doetsch RN
    J Bacteriol; 1965 Dec; 90(6):1645-54. PubMed ID: 5892590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of the modified tetrapyrroles-the pigments of life.
    Bryant DA; Hunter CN; Warren MJ
    J Biol Chem; 2020 May; 295(20):6888-6925. PubMed ID: 32241908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse enzymatic chemistry for propionate side chain cleavages in tetrapyrrole biosynthesis.
    Ushimaru R; Lyu J; Abe I
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37422437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis.
    Czarnecki O; Peter E; Grimm B
    Methods Mol Biol; 2011; 775():357-85. PubMed ID: 21863454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compound 800, a natural product isolated from genetically engineered Pseudomonas: proposed structure, reactivity, and putative relation to heme d1.
    Youn HS; Liang Q; Cha JK; Cai M; Timkovich R
    Biochemistry; 2004 Aug; 43(33):10730-8. PubMed ID: 15311934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.