These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 34771361)
1. Combining Materials Obtained by 3D-Printing and Electrospinning from Commercial Polylactide Filament to Produce Biocompatible Composites. Romero-Araya P; Pino V; Nenen A; Cárdenas V; Pavicic F; Ehrenfeld P; Serandour G; Lisoni JG; Moreno-Villoslada I; Flores ME Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771361 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
3. A simple and fast method for screening production of polymer-ceramic filaments for bone implant printing using commercial fused deposition modelling 3D printers. Podgórski R; Wojasiński M; Trepkowska-Mejer E; Ciach T Biomater Adv; 2023 Mar; 146():213317. PubMed ID: 36738523 [TBL] [Abstract][Full Text] [Related]
4. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering. Ni P; Fu S; Fan M; Guo G; Shi S; Peng J; Luo F; Qian Z Int J Nanomedicine; 2011; 6():3065-75. PubMed ID: 22163160 [TBL] [Abstract][Full Text] [Related]
6. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds. Elhattab K; Bhaduri SB; Lawrence JG; Sikder P ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414 [TBL] [Abstract][Full Text] [Related]
7. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Caminero MÁ; Chacón JM; García-Plaza E; Núñez PJ; Reverte JM; Becar JP Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31060241 [TBL] [Abstract][Full Text] [Related]
8. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Backes EH; Fernandes EM; Diogo GS; Marques CF; Silva TH; Costa LC; Passador FR; Reis RL; Pessan LA Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111928. PubMed ID: 33641921 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of 3D Printability by FDM and Electrical Conductivity of PLA/MWCNT Filaments Using Lignin as Bio-Dispersant. Lage-Rivera S; Ares-Pernas A; Becerra Permuy JC; Gosset A; Abad MJ Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850283 [TBL] [Abstract][Full Text] [Related]
10. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
11. Development of Antimicrobial PLA Composites for Fused Filament Fabrication. Brounstein Z; Yeager CM; Labouriau A Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33671918 [TBL] [Abstract][Full Text] [Related]
13. Mg-Doped PLA Composite as a Potential Material for Tissue Engineering-Synthesis, Characterization, and Additive Manufacturing. Ali F; Al Rashid A; Kalva SN; Koç M Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834643 [TBL] [Abstract][Full Text] [Related]
14. 3D-Printable PLA/Mg Composite Filaments for Potential Bone Tissue Engineering Applications. Kalva SN; Ali F; Velasquez CA; Koç M Polymers (Basel); 2023 Jun; 15(11):. PubMed ID: 37299370 [TBL] [Abstract][Full Text] [Related]
15. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. Alksne M; Kalvaityte M; Simoliunas E; Rinkunaite I; Gendviliene I; Locs J; Rutkunas V; Bukelskiene V J Mech Behav Biomed Mater; 2020 Apr; 104():103641. PubMed ID: 32174399 [TBL] [Abstract][Full Text] [Related]
16. Parameters Affecting the Mechanical Properties of Three-Dimensional (3D) Printed Carbon Fiber-Reinforced Polylactide Composites. Lee D; Wu GY Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33114103 [TBL] [Abstract][Full Text] [Related]
17. Potential for Natural Fiber Reinforcement in PLA Polymer Filaments for Fused Deposition Modeling (FDM) Additive Manufacturing: A Review. Lee CH; Padzil FNBM; Lee SH; Ainun ZMA; Abdullah LC Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925266 [TBL] [Abstract][Full Text] [Related]
18. Recycling of waste crab shells into reinforced poly (lactic acid) biocomposites for 3D printing. Yang F; Ye X; Zhong J; Lin Z; Wu S; Hu Y; Zheng W; Zhou W; Wei Y; Dong X Int J Biol Macromol; 2023 Apr; 234():122974. PubMed ID: 36566808 [TBL] [Abstract][Full Text] [Related]
19. 3D printing of cellulose nanocrystals based composites to build robust biomimetic scaffolds for bone tissue engineering. N'Gatta KM; Belaid H; El Hayek J; Assanvo EF; Kajdan M; Masquelez N; Boa D; Cavaillès V; Bechelany M; Salameh C Sci Rep; 2022 Dec; 12(1):21244. PubMed ID: 36482172 [TBL] [Abstract][Full Text] [Related]
20. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds. Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]