These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 34771388)
61. Solar Hydrogen Generation from Ambient Humidity Using Functionalized Porous Photoanodes. Zafeiropoulos G; Johnson H; Kinge S; van de Sanden MCM; Tsampas MN ACS Appl Mater Interfaces; 2019 Nov; 11(44):41267-41280. PubMed ID: 31601096 [TBL] [Abstract][Full Text] [Related]
62. Optimum concentration gradient of the electrocatalyst, Nafion® and poly(tetrafluoroethylene) in a membrane-electrode-assembly for enhanced performance of direct methanol fuel cells. Liu JH; Jeon MK; Lee KR; Woo SI Phys Chem Chem Phys; 2010 Dec; 12(46):15259-64. PubMed ID: 20944853 [TBL] [Abstract][Full Text] [Related]
63. Use of a High-Performance Poly( Oshima T; Yoshizawa-Fujita M; Takeoka Y; Rikukawa M ACS Omega; 2016 Nov; 1(5):939-942. PubMed ID: 31457174 [TBL] [Abstract][Full Text] [Related]
64. Improving the Mechanical Durability of Short-Side-Chain Perfluorinated Polymer Electrolyte Membranes by Annealing and Physical Reinforcement. Shin SH; Nur PJ; Kodir A; Kwak DH; Lee H; Shin D; Bae B ACS Omega; 2019 Nov; 4(21):19153-19163. PubMed ID: 31763538 [TBL] [Abstract][Full Text] [Related]
65. Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes. Yin C; Li J; Zhou Y; Zhang H; Fang P; He C ACS Appl Mater Interfaces; 2018 Apr; 10(16):14026-14035. PubMed ID: 29620850 [TBL] [Abstract][Full Text] [Related]
66. Comparison of the hydration and diffusion of protons in perfluorosulfonic acid membranes with molecular dynamics simulations. scui@utk.edu. Cui S; Liu J; Selvan ME; Paddison SJ; Keffer DJ; Edwards BJ J Phys Chem B; 2008 Oct; 112(42):13273-84. PubMed ID: 18826266 [TBL] [Abstract][Full Text] [Related]
67. Mechanistic Study of Fast Performance Decay of PtCu Alloy-based Catalyst Layers for Polymer Electrolyte Fuel Cells through Electrochemical Impedance Spectroscopy. Grandi M; Gatalo M; Kamšek AR; Kapun G; Mayer K; Ruiz-Zepeda F; Šala M; Marius B; Bele M; Hodnik N; Bodner M; Gaberšček M; Hacker V Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176426 [TBL] [Abstract][Full Text] [Related]
68. Poly(ionic liquid) Ionomers Help Prevent Active Site Aggregation, in Single-Site Oxygen Reduction Catalysts. Favero S; Li A; Wang M; Uddin F; Kuzuoglu B; Georgeson A; Stephens IEL; Titirici MM ACS Catal; 2024 May; 14(10):7937-7948. PubMed ID: 38779182 [TBL] [Abstract][Full Text] [Related]
69. Structure and conductivity of ionomer in PEM fuel cell catalyst layers: a model-based analysis. Olbrich W; Kadyk T; Sauter U; Eikerling M; Gostick J Sci Rep; 2023 Aug; 13(1):14127. PubMed ID: 37644035 [TBL] [Abstract][Full Text] [Related]
70. Preparation and Study of Sulfonated Co-Polynaphthoyleneimide Proton-Exchange Membrane for a H2/Air Fuel Cell. Zavorotnaya UM; Ponomarev II; Volkova YA; Modestov AD; Andreev VN; Privalov AF; Vogel M; Sinitsyn VV Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238505 [TBL] [Abstract][Full Text] [Related]
71. Modifying the Electrocatalyst-Ionomer Interface via Sulfonated Poly(ionic liquid) Block Copolymers to Enable High-Performance Polymer Electrolyte Fuel Cells. Li Y; Van Cleve T; Sun R; Gawas R; Wang G; Tang M; Elabd YA; Snyder J; Neyerlin KC ACS Energy Lett; 2020 Jun; 5(6):1726-1731. PubMed ID: 38434232 [TBL] [Abstract][Full Text] [Related]
72. Spectroscopic Investigation of Catalyst Inks and Thin Films Toward the Development of Ionomer Quality Control. Jacobsen D; Porter J; Ulsh M; Rupnowski P Appl Spectrosc; 2022 Jun; 76(6):644-659. PubMed ID: 35255724 [TBL] [Abstract][Full Text] [Related]
73. Evolution of the Interfacial Structure of a Catalyst Ink with the Quality of the Dispersing Solvent: A Contrast Variation Small-Angle and Ultrasmall-Angle Neutron Scattering Investigation. Balu R; Choudhury NR; Mata JP; de Campo L; Rehm C; Hill AJ; Dutta NK ACS Appl Mater Interfaces; 2019 Mar; 11(10):9934-9946. PubMed ID: 30762351 [TBL] [Abstract][Full Text] [Related]
74. High-Temperature Water Electrolysis Properties of Membrane Electrode Assemblies with Nafion and Crosslinked Sulfonated Polyphenylsulfone Membranes by Using a Decal Method. Kim JD Membranes (Basel); 2024 Aug; 14(8):. PubMed ID: 39195425 [TBL] [Abstract][Full Text] [Related]
75. Highly Stable, Low Gas Crossover, Proton-Conducting Phenylated Polyphenylenes. Adamski M; Skalski TJG; Britton B; Peckham TJ; Metzler L; Holdcroft S Angew Chem Int Ed Engl; 2017 Jul; 56(31):9058-9061. PubMed ID: 28609604 [TBL] [Abstract][Full Text] [Related]
76. Control of Cluster Structures in Catalyst Inks by a Dispersion Medium. Yang D; Zhu S; Guo Y; Tang H; Yang D; Zhang C; Ming P; Li B ACS Omega; 2021 Dec; 6(48):32960-32969. PubMed ID: 34901647 [TBL] [Abstract][Full Text] [Related]
77. Ionomer degradation in catalyst layers of anion exchange membrane fuel cells. Li Q; Hu M; Ge C; Yang Y; Xiao L; Zhuang L; Abruña HD Chem Sci; 2023 Oct; 14(38):10429-10434. PubMed ID: 37800009 [TBL] [Abstract][Full Text] [Related]
78. Quaternary Ammonium-Bearing Perfluorinated Polymers for Anion Exchange Membrane Applications. Lee S; Lee H; Yang TH; Bae B; Tran NAT; Cho Y; Jung N; Shin D Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33114757 [TBL] [Abstract][Full Text] [Related]
79. Improved Electrochemical and Mechanical Properties of Poly(vinylpyrrolidone)/Nafion Lutful Kabir MD; Paul S; Choi SJ; Kim HJ J Nanosci Nanotechnol; 2020 Dec; 20(12):7793-7799. PubMed ID: 32711660 [TBL] [Abstract][Full Text] [Related]
80. Preparation of high catalyst utilization electrodes for polymer electrolyte fuel cells. Song JM; Suzuki S; Uchida H; Watanabe M Langmuir; 2006 Jul; 22(14):6422-8. PubMed ID: 16800709 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]