These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34771771)

  • 1. Fatigue Crack Initiation Change of Cast AZ91 Magnesium Alloy from Low to Very High Cycle Fatigue Region.
    Fintová S; Trško L; Chlup Z; Pastorek F; Kajánek D; Kunz L
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation.
    Fintová S; Kunz L
    J Mech Behav Biomed Mater; 2015 Feb; 42():219-28. PubMed ID: 25498295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Multi-Holes on Fatigue Behaviors of Cast Magnesium Alloys Based on In-Situ Scanning Electron Microscope Technology.
    Wang XS; Tan CH; Ma J; Zhu XD; Wang QY
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30216982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of fatigue crack initiation facets in Ti-6Al-4V using focused ion beam milling and electron backscatter diffraction.
    Everaerts J; Verlinden B; Wevers M
    J Microsc; 2017 Jul; 267(1):57-69. PubMed ID: 28294326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg⁻Gd⁻Y⁻Zr Alloy.
    He C; Wu Y; Peng L; Su N; Li X; Yang K; Liu Y; Yuan S; Tian R
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30513615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue in an AZ31 Alloy Subjected to Rotary Swaging.
    Trojanová Z; Drozd Z; Halmešová K; Džugan J; Hofrichterová T; Palček P; Minárik P; Škraban T; Nový F
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Welded Pores on Very Long-Life Fatigue Failure of the Electron Beam Welding Joint of TC17 Titanium Alloy.
    Liu F; Zhang H; Liu H; Chen Y; Muhammad Kashif K; Wang Q; Liu Y
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31195649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Cycle Fatigue Behavior and Corresponding Microscale Deformation Mechanisms of Metastable Ti55511 Alloy with A Basket-Weave Microstructure.
    Luo H; Yuan W; Xiang W; Deng H; Yin H; Chen L; Cao S
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Precipitate Microstructure Affecting Fatigue Behavior of 7020 Aluminum Alloy.
    Shan Z; Liu S; Ye L; Li Y; He C; Chen J; Tang J; Deng Y; Zhang X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Thermal Fatigue Life and Crack Morphology in Brake Discs of Low-Alloy Steel for High-Speed Trains.
    Wang J; Chen Y; Zuo L; Zhao H; Ma N
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crack Initiation Mechanism and Life Prediction of Ti60 Titanium Alloy Considering Stress Ratios Effect in Very High Cycle Fatigue Regime.
    He R; Peng H; Liu F; Khan MK; Chen Y; He C; Wang C; Wang Q; Liu Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue Characteristics of 7050-T7451 Aluminum Alloy Friction Stir Welding Joints and the Stress Ratio Effect.
    Zhu H; Lacidogna G; Deng C; Gong B; Liu F
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Microstructure and Axial Tension on Three-Point Bending Fatigue Behavior of TC4 in High Cycle and Very High Cycle Regimes.
    Bao X; Cheng L; Ding J; Chen X; Lu K; Cui W
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Evolution of Fretting Wear Behavior and Damage Mechanism in Alloy 690TT with Cycle Number.
    Xin L; Han Y; Ling L; Zhang W; Lu Y; Shoji T
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32466203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DIC-Based Study on Fatigue Damage Evolution in Pre-Corroded Aluminum Alloy 2024-T4.
    Song H; Liu C; Zhang H; Leen SB
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth.
    Mughrabi H
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics).
    Masuda K; Ishihara S; Shibata H; Oguma N
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Residual Stress on S-N Curves and Fracture Morphology of Ti6Al4V Titanium Alloy after Laser Shock Peening without Protective Coating.
    Pan X; Li X; Zhou L; Feng X; Luo S; He W
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Thermo-Mechanical Fatigue Life for Eutectic Al-Si Alloy by the Ultrasonic Melt Treatment.
    Wang M; Pang J; Liu X; Wang J; Liu Y; Li S; Zhang Z
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid.
    Bobby Kannan M; Singh Raman RK; Witte F; Blawert C; Dietzel W
    J Biomed Mater Res B Appl Biomater; 2011 Feb; 96(2):303-9. PubMed ID: 21210510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.