These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 34771790)
1. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L. Ur Rehman A; Pitir F; Salamci MU Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771790 [TBL] [Abstract][Full Text] [Related]
2. Thermo-Fluid-Dynamic Modeling of the Melt Pool during Selective Laser Melting for AZ91D Magnesium Alloy. Shen H; Yan J; Niu X Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32962085 [TBL] [Abstract][Full Text] [Related]
3. Laser Melting Deposition Additive Manufacturing of Ti6Al4V Biomedical Alloy: Mesoscopic In-Situ Flow Field Mapping via Computational Fluid Dynamics and Analytical Modelling with Empirical Testing. Mahmood MA; Ur Rehman A; Pitir F; Salamci MU; Mihailescu IN Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947357 [TBL] [Abstract][Full Text] [Related]
4. Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing. Zhang Z; Zhang T; Sun C; Karna S; Yuan L Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398900 [TBL] [Abstract][Full Text] [Related]
5. Measurements of melt pool geometry and cooling rates of individual laser traces on IN625 bare plates. Lane B; Heigel J; Ricker R; Zhirnov I; Khromschenko V; Weaver J; Phan T; Stoudt M; Mekhontsev S; Levine L Integr Mater Manuf Innov; 2020; 9(1):. PubMed ID: 34123701 [TBL] [Abstract][Full Text] [Related]
6. A Numerical Study on the Mesoscopic Characteristics of Ti-6Al-4V by Selective Laser Melting. Ao X; Liu J; Xia H; Yang Y Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454547 [TBL] [Abstract][Full Text] [Related]
7. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy. Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384 [TBL] [Abstract][Full Text] [Related]
8. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and 1000 °C: Operando Study. Ur Rehman A; Pitir F; Salamci MU Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772210 [TBL] [Abstract][Full Text] [Related]
9. Numerical Simulation in the Melt Pool Evolution of Laser Powder Bed Fusion Process for Ti6Al4V. Xu Y; Zhang D; Deng J; Wu X; Li L; Xie Y; Poprawe R; Schleifenbaum JH; Ziegler S Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363176 [TBL] [Abstract][Full Text] [Related]
10. Melt Pool Changes Characterization in Laser-Processed H11 Hot Work Tool Steel Using Point-by-Point Scanning Mode towards LPBF Process Optimization. Fryzowicz K; Bardo R; Dziurka R; Kawałko J; Cios G; Stwora A; Bała P Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336372 [TBL] [Abstract][Full Text] [Related]
11. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches. Ansari MJ; Nguyen DS; Park HS Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432 [TBL] [Abstract][Full Text] [Related]
12. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. Calta NP; Wang J; Kiss AM; Martin AA; Depond PJ; Guss GM; Thampy V; Fong AY; Weker JN; Stone KH; Tassone CJ; Kramer MJ; Toney MF; Van Buuren A; Matthews MJ Rev Sci Instrum; 2018 May; 89(5):055101. PubMed ID: 29864819 [TBL] [Abstract][Full Text] [Related]
13. Frequency domain measurements of melt pool recoil force using modal analysis. Cullom T; Lough C; Altese N; Bristow D; Landers R; Brown B; Hartwig T; Barnard A; Blough J; Johnson K; Kinzel E Sci Rep; 2021 May; 11(1):10959. PubMed ID: 34040081 [TBL] [Abstract][Full Text] [Related]
14. In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion. Hojjatzadeh SMH; Guo Q; Parab ND; Qu M; Escano LI; Fezzaa K; Everhart W; Sun T; Chen L Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072400 [TBL] [Abstract][Full Text] [Related]
15. Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation. Ur Rehman A; Mahmood MA; Pitir F; Salamci MU; Popescu AC; Mihailescu IN Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947634 [TBL] [Abstract][Full Text] [Related]
16. Reuse of Ti6Al4V Powder and Its Impact on Surface Tension, Melt Pool Behavior and Mechanical Properties of Additively Manufactured Components. Skalon M; Meier B; Leitner T; Arneitz S; Amancio-Filho ST; Sommitsch C Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800747 [TBL] [Abstract][Full Text] [Related]
17. Mesoscopic Simulation of Core-Shell Composite Powder Materials by Selective Laser Melting. Bao T; Tan Y; Xu Y Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959603 [TBL] [Abstract][Full Text] [Related]
18. Quantification of Interdependent Dynamics during Laser Additive Manufacturing Using X-Ray Imaging Informed Multi-Physics and Multiphase Simulation. Leung CLA; Luczyniec D; Guo E; Marussi S; Atwood RC; Meisnar M; Saunders B; Lee PD Adv Sci (Weinh); 2022 Dec; 9(36):e2203546. PubMed ID: 36316220 [TBL] [Abstract][Full Text] [Related]
19. Review of Visual Measurement Methods for Metal Vaporization Processes in Laser Powder Bed Fusion. Liu J; Wei B; Chang H; Li J; Yang G Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512662 [TBL] [Abstract][Full Text] [Related]
20. Multi-Physics Modeling of Melting-Solidification Characteristics in Laser Powder Bed Fusion Process of 316L Stainless Steel. Shan X; Pan Z; Gao M; Han L; Choi JP; Zhang H Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]