These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 34771824)

  • 1. Optimization of Alkali-Activated Municipal Slag Composite Performance by Substituting Varying Ratios of Fly Ash for Fine Aggregate.
    El-Wafa MA; Fukuzawa K
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the Mechanical Properties and Microstructure of Alkali-Activated Fly Ash-Slag Composite Cementitious Materials.
    Lv Y; Wang C; Han W; Li X; Peng H
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-Friendly, High-Ductility Slag/Fly-Ash-Based Engineered Cementitious Composite (ECC) Reinforced with PE Fibers.
    Shumuye ED; Liu J; Li W; Wang Z
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strength Characteristics and Microstructure Analysis of Alkali-Activated Slag-Fly Ash Cementitious Material.
    Zhu C; Wan Y; Wang L; Ye Y; Yu H; Yang J
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on Shrinkage in Alkali-Activated Slag-Fly Ash Cementitious Materials.
    Cui P; Wan Y; Shao X; Ling X; Zhao L; Gong Y; Zhu C
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties and microstructure of brick aggregate concrete with raw fly ash as a partial replacement of cement.
    Islam MN; Noaman MA; Islam KS; Hanif MA
    Heliyon; 2024 Apr; 10(7):e28904. PubMed ID: 38633645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Different Parameters on the Performance of Alkali-Activated Slag/Fly Ash Composite System.
    Zhang Z; Jia Y; Liu J
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Composition Type and Activator on Fly Ash-Based Alkali Activated Materials.
    Lin CY; Chen TA
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fresh Properties and Sulfuric Acid Resistance of Sustainable Mortar Using Alkali-Activated GGBS/Fly Ash Binder.
    Mohamed OA; Al Khattab R
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching of monolithic and granular alkali activated slag-fly ash materials, as a function of the mixture design.
    Keulen A; van Zomeren A; Dijkstra JJ
    Waste Manag; 2018 Aug; 78():497-508. PubMed ID: 32559938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and Microstructure of Alkali-Activated Rice Husk Ash-Granulated Blast Furnace Slag Tailing Composite Cemented Paste Backfill.
    Zhao W; Ji C; Sun Q; Gu Q
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Steel Slag on the Properties of Alkali-Activated Slag Material: A Comparative Study with Fly Ash.
    Han F; Zhu Z; Zhang H; Li Y; Fu T
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the Curing Regime, Acid Exposure, Alkaline Activator Dosage, and Precursor Content on the Strength Development of Mortar with Alkali-Activated Slag and Fly Ash Binder: A Critical Review.
    Mohamed OA
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive Strength and Chloride Ion Penetration Resistance of GGBFS-Based Alkali-Activated Composites Containing Ferronickel Slag Aggregates.
    Lee JI; Kim CY; Yoon JH; Choi SJ
    Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Term Physical and Mechanical Properties and Microstructures of Fly-Ash-Based Geopolymer Composite Incorporating Carbide Slag.
    Zhao X; Wang H; Jiang L; Meng L; Zhou B; Zhang J
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Waste Glass Powder on Rheological and Mechanical Properties of Calcium Carbide Residue Alkali-Activated Composite Cementitious Materials System.
    Chen Y; Wu X; Yin W; Tang S; Yan G
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the Effect of Mixing Time on the Mechanical Properties of Alkali-Activated Cement Mixed with Fly Ash and Slag.
    Kim T; Kang C
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of Preplaced Aggregate Concrete Fabricated with Alkali-Activated Slag/Fly Ash Cements.
    Siddique S; Kim H; Son H; Jang JG
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical order of influence of mix variables affecting compressive strength of sustainable concrete containing fly ash, copper slag, silica fume, and fibres.
    Natarajan S; Karuppiah G
    ScientificWorldJournal; 2014; 2014():646840. PubMed ID: 24707213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Strength and Fracture Characteristics of One-Part Strain-Hardening Green Alkali-Activated Engineered Composites.
    Hossain KMA; Sood D
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.