These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34771932)

  • 1. Temperature Effects on the Compressive Behaviors of Closed-Cell Copper Foams Prepared by Powder Metallurgy.
    Han B; Li Y; Wang Z; Gu X; Zhang Q
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive Properties and Energy Absorption Behavior of 316L Steel Foam Prepared by Space Holder Technique.
    Hu G; Xu G; Gao Q; Feng Z; Huang P; Zu G
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-Static Mechanical Response of Density-Graded Polyurea Elastomeric Foams.
    Smeets M; Koohbor B; Youssef G
    ACS Appl Polym Mater; 2023 Apr; 5(4):2840-2851. PubMed ID: 37090421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive Behavior of Aluminum Microfibers Reinforced Semi-Rigid Polyurethane Foams.
    Linul E; Vălean C; Linul PA
    Polymers (Basel); 2018 Nov; 10(12):. PubMed ID: 30961223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static Mechanical Properties of Expanded Polypropylene Crushable Foam.
    Rumianek P; Dobosz T; Nowak R; Dziewit P; Aromiński A
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33419072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compression Properties and Fabrication of Closed-Cell Metal Matrix Syntactic Foams Al
    Li C; Yang E; Tang L; Li Y; Xu L
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Compressive Properties of Low to Medium Porosity Closed-Cell Porous Aluminum Using PMMA Space Holder Technique.
    Jamal NA; Tan AW; Yusof F; Katsuyoshi K; Hisashi I; Singh S; Anuar H
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Compressive Behaviors of Two-Layer Graded Aluminum Foams under Blast Loading.
    Liang M; Li X; Lin Y; Zhang K; Lu F
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31058872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Quasi-Static Compressive Properties of Mg-AZ91D-Al₂O₃ Syntactic Foams.
    Newsome DB; Schultz BF; Ferguson JB; Rohatgi PK
    Materials (Basel); 2015 Sep; 8(9):6085-6095. PubMed ID: 28793553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic Compressive Behavior of Functionally Density Graded Aluminum Foam Prepared by Controlled Melt Foaming Process.
    Zhang B; Hu S; Fan Z
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30563081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic Compressive Behavior of Metallic Foams under Extreme Temperature Conditions.
    Khezrzadeh O; Mirzaee O; Emadoddin E; Linul E
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32438755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study on compressive deformation and corrosion behaviour of heat treated Ti4wt%Al foam of different porosity made of milled and unmilled powders.
    Singh P; Singh IB; Mondal DP
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():918-929. PubMed ID: 30813099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication, Processing, Properties, and Applications of Closed-Cell Aluminum Foams: A Review.
    Fu W; Li Y
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the Space Holder Shape on the Pore Structure and Mechanical Properties of Porous Cu with a Wide Porosity Range.
    Xiao J; He Y; Ma W; Yue Y; Qiu G
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manufacturing of graded titanium scaffolds using a novel space holder technique.
    Chen Y; Kent D; Bermingham M; Dehghan-Manshadi A; Wang G; Wen C; Dargusch M
    Bioact Mater; 2017 Dec; 2(4):248-252. PubMed ID: 29744433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive Behaviour of Closed-Cell Aluminium Foam at Different Strain Rates.
    Novak N; Vesenjak M; Duarte I; Tanaka S; Hokamoto K; Krstulović-Opara L; Guo B; Chen P; Ren Z
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31818012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Behavior of Closed-Cell Ethylene-Vinyl Acetate Foam under Compression.
    Chen H; Sun D; Gao L; Liu X; Zhang M
    Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing and damping capacity of NiTi foams with laminated pore architecture.
    Zhang X; Wei L
    J Mech Behav Biomed Mater; 2019 Aug; 96():108-117. PubMed ID: 31035061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crushing Responses of Expanded Polypropylene Foam.
    Xing Y; Sun D; Zhang M; Shu G
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binder Jetting Additive Manufacturing of High Porosity 316L Stainless Steel Metal Foams.
    Meenashisundaram GK; Xu Z; Nai MLS; Lu S; Ten JS; Wei J
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32847089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.