BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 34771940)

  • 1. Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One.
    Ovejero JG; Spizzo F; Morales MP; Del Bianco L
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications.
    Lavorato GC; Das R; Alonso Masa J; Phan MH; Srikanth H
    Nanoscale Adv; 2021 Feb; 3(4):867-888. PubMed ID: 36133290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the heating of complex nanoparticle aggregates for magnetic hyperthermia.
    Ortega-Julia J; Ortega D; Leliaert J
    Nanoscale; 2023 Jun; 15(24):10342-10350. PubMed ID: 37288522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid nanoparticles for magnetic and plasmonic hyperthermia.
    Ovejero JG; Morales I; de la Presa P; Mille N; Carrey J; Garcia MA; Hernando A; Herrasti P
    Phys Chem Chem Phys; 2018 Sep; 20(37):24065-24073. PubMed ID: 30204177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?
    Carrião MS; Bakuzis AF
    Nanoscale; 2016 Apr; 8(15):8363-77. PubMed ID: 27046437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell nanostructures: a simplest two-component system with enhanced properties and multiple applications.
    Singh R; Bhateria R
    Environ Geochem Health; 2021 Jul; 43(7):2459-2482. PubMed ID: 33161517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia.
    Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R
    Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia.
    Demessie AA; Park Y; Singh P; Moses AS; Korzun T; Sabei FY; Albarqi HA; Campos L; Wyatt CR; Farsad K; Dhagat P; Sun C; Taratula OR; Taratula O
    Small Methods; 2022 Dec; 6(12):e2200916. PubMed ID: 36319445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid core-shell nanoparticles for cell-specific magnetic separation and photothermal heating.
    de la Encarnación C; Jungwirth F; Vila-Liarte D; Renero-Lecuna C; Kavak S; Orue I; Wilhelm C; Bals S; Henriksen-Lacey M; Jimenez de Aberasturi D; Liz-Marzán LM
    J Mater Chem B; 2023 Jun; 11(24):5574-5585. PubMed ID: 37040257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model.
    Shah RR; Dombrowsky AR; Paulson AL; Johnson MP; Nikles DE; Brazel CS
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():18-29. PubMed ID: 27523991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach.
    Barrera G; Allia P; Tiberto P
    Nanoscale; 2021 Feb; 13(7):4103-4121. PubMed ID: 33570053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Janus Magnetic-Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapy.
    Espinosa A; Reguera J; Curcio A; Muñoz-Noval Á; Kuttner C; Van de Walle A; Liz-Marzán LM; Wilhelm C
    Small; 2020 Mar; 16(11):e1904960. PubMed ID: 32077633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant-driven optimization of iron-based nanoparticle synthesis: a study on magnetic hyperthermia and endothelial cell uptake.
    Riahi K; Dirba I; Ablets Y; Filatova A; Sultana SN; Adabifiroozjaei E; Molina-Luna L; Nuber UA; Gutfleisch O
    Nanoscale Adv; 2023 Oct; 5(21):5859-5869. PubMed ID: 37881718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Local Nanoscale Heating Mechanism of a Magnetic Core in Mesoporous Silica Drug-Delivery Nanoparticles Using Fluorescence Depolarization.
    Lin FC; Zink JI
    J Am Chem Soc; 2020 Mar; 142(11):5212-5220. PubMed ID: 32091888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core-shell nanoparticles.
    Seemann KM; Luysberg M; Révay Z; Kudejova P; Sanz B; Cassinelli N; Loidl A; Ilicic K; Multhoff G; Schmid TE
    J Control Release; 2015 Jan; 197():131-7. PubMed ID: 25445697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model Driven Optimization of Magnetic Anisotropy of Exchange-coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss.
    Zhang Q; Castellanos-Rubio I; Munshi R; Orue I; Pelaz B; Gries KI; Parak WJ; Del Pino P; Pralle A
    Chem Mater; 2015 Nov; 27(21):7380-7387. PubMed ID: 31105383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia.
    Coral DF; Zélis PM; Marciello M; Morales Mdel P; Craievich A; Sánchez FH; van Raap MB
    Langmuir; 2016 Feb; 32(5):1201-13. PubMed ID: 26751761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems.
    Phan MH; Alonso J; Khurshid H; Lampen-Kelley P; Chandra S; Stojak Repa K; Nemati Z; Das R; Iglesias Ó; Srikanth H
    Nanomaterials (Basel); 2016 Nov; 6(11):. PubMed ID: 28335349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.