These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34771954)

  • 21. Ultra-Wideband Flexible Absorber in Microwave Frequency Band.
    Fan S; Song Y
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal and graphene hybrid metasurface designed ultra-wideband terahertz absorbers with polarization and incident angle insensitivity.
    Peng L; Li XM; Liu X; Jiang X; Li SM
    Nanoscale Adv; 2019 Apr; 1(4):1452-1459. PubMed ID: 36132596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-Wideband and Narrowband Switchable, Bi-Functional Metamaterial Absorber Based on Vanadium Dioxide.
    Wang X; Liu Y; Jia Y; Su N; Wu Q
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range.
    Ye L; Chen Y; Cai G; Liu N; Zhu J; Song Z; Liu QH
    Opt Express; 2017 May; 25(10):11223-11232. PubMed ID: 28788804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects.
    Li SJ; Wu PX; Xu HX; Zhou YL; Cao XY; Han JF; Zhang C; Yang HH; Zhang Z
    Nanoscale Res Lett; 2018 Nov; 13(1):386. PubMed ID: 30498863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared.
    Liu J; Ma WZ; Chen W; Yu GX; Chen YS; Deng XC; Yang CF
    Opt Express; 2020 Aug; 28(16):23748-23760. PubMed ID: 32752367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A high-performance terahertz absorber based on synthetic-patterned vanadium dioxide metamaterials.
    Xue X; Chen D; Wang X; Wu J; Ying H; Xu B
    Phys Chem Chem Phys; 2022 Dec; 25(1):778-787. PubMed ID: 36507907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Tunable Terahertz Absorber Based on Double-Layer Patterned Graphene Metamaterials.
    Tang X; Jia H; Liu L; Li M; Wu D; Zhou K; Li P; Tian L; Yang D; Wang W
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Switchable and Dual-Tunable Multilayered Terahertz Absorber Based on Patterned Graphene and Vanadium Dioxide.
    Liu H; Wang P; Wu J; Yan X; Yuan X; Zhang Y; Zhang X
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34072164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Ultra-Wideband THz/IR Metamaterial Absorber Based on Doped Silicon.
    Liu H; Luo K; Tang S; Peng D; Hu F; Tu L
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ultra-broadband multilayered graphene absorber.
    Amin M; Farhat M; Bağcı H
    Opt Express; 2013 Dec; 21(24):29938-48. PubMed ID: 24514545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A dual ultra-broadband switchable high-performance terahertz absorber based on hybrid graphene and vanadium dioxide.
    Chen W; Li C; Wang D; Gao S; Zhang C; Guo H; An W; Guo S; Wu G
    Phys Chem Chem Phys; 2023 Aug; 25(30):20414-20421. PubMed ID: 37466116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and equivalent circuit model extraction of a broadband graphene metasurface absorber based on a hexagonal spider web structure in the terahertz band.
    Bordbar A; Basiry R; Yahaghi A
    Appl Opt; 2020 Mar; 59(7):2165-2172. PubMed ID: 32225748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of a Penta-Band Graphene-Based Terahertz Metamaterial Absorber with Fine Sensing Performance.
    Lai R; Chen H; Zhou Z; Yi Z; Tang B; Chen J; Yi Y; Tang C; Zhang J; Sun T
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polarization-insensitive dual-wideband fractal meta-absorber for terahertz applications.
    Naveed MA; Bilal RMH; Rahim AA; Baqir MA; Ali MM
    Appl Opt; 2021 Oct; 60(29):9160-9166. PubMed ID: 34623998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadband continuous/discrete spectrum optical absorber using graphene-wrapped fractal oligomers.
    Raad SH; Atlasbaf Z
    Opt Express; 2020 Jun; 28(12):18049-18058. PubMed ID: 32680006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials.
    Feng H; Xu Z; Li K; Wang M; Xie W; Luo Q; Chen B; Kong W; Yun M
    Opt Express; 2021 Mar; 29(5):7158-7167. PubMed ID: 33726222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene.
    Huang ML; Cheng YZ; Cheng ZZ; Chen HR; Mao XS; Gong RZ
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29614736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reverse design of metamaterial absorbers based on an equivalent circuit.
    Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.