These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34772008)

  • 1. Elastoplastic Model Framework for Saturated Soils Subjected to a Freeze-Thaw Cycle Based on Generalized Plasticity Theory.
    Cong S; Ling X; Li X; Geng L; Xing W; Li G
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Freeze-Thaw Cycles and Binder Dosage on the Engineering Properties of Compound Solidified/Stabilized Lead-Contaminated Soils.
    Yang Z; Wang Y; Li D; Li X; Liu X
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Long-Term Repeated Freeze-Thaw Cycles on the Engineering Properties of Compound Solidified/Stabilized Pb-Contaminated Soil: Deterioration Characteristics and Mechanisms.
    Yang Z; Li X; Li D; Wang Y; Liu X
    Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32164256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing of mechanical property and bearing capacity of strongly chlorine saline soil under freeze-thaw cycles.
    Ding S; Li S; Kong S; Li Q; Yang T; Nie Z; Zhao G
    Sci Rep; 2024 Mar; 14(1):6203. PubMed ID: 38485713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of freeze-thaw on characteristics of new KMP binder stabilized Zn- and Pb-contaminated soils.
    Wei ML; Du YJ; Reddy KR; Wu HL
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19473-84. PubMed ID: 26257120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Long-Term Freeze-Thaw Cycles on the Properties of Stabilized/Solidified Lead-Zinc-Cadmium Composite-Contaminated Soil.
    Yang Z; Chang J; Wang Y; Li X; Li S
    Int J Environ Res Public Health; 2021 Jun; 18(11):. PubMed ID: 34204028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impacts of freeze-thaw cycles on saturated hydraulic conductivity and microstructure of saline-alkali soils.
    Xu W; Li K; Chen L; Kong W; Liu C
    Sci Rep; 2021 Sep; 11(1):18655. PubMed ID: 34545144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Dynamic change of dissolved iron in wetland soil solutions responding to freeze-thaw cycles].
    Yu XF; Wang GP; Lü XG; Zou YC; Jiang M
    Huan Jing Ke Xue; 2010 May; 31(5):1387-94. PubMed ID: 20623881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Adsorption and Desorption of Pb(2+) and Cd(2+) in Freeze-Thaw Treated Soils.
    Li L; Ma J; Xu M; Li X; Tao J; Wang G; Yu J; Guo P
    Bull Environ Contam Toxicol; 2016 Jan; 96(1):107-12. PubMed ID: 26644028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Mechanical Properties and Visco-Elastic Damage Constitutive Model of Freeze-thawed Concrete.
    Li Y; Zhai Y; Liang W; Li Y; Dong Q; Meng F
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32932696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of freeze-thaw and soil moisture on content and spectral structure properties of dissolved organic matter in forest soil leachates.].
    Kong YH; Zhu LF; Wu HH; Fu PQ; Xu XK
    Ying Yong Sheng Tai Xue Bao; 2019 Sep; 30(9):2903-2914. PubMed ID: 31529864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of long-term freeze-thaw cycles on the stabilization of lead in compound solidified/stabilized lead-contaminated soil.
    Zhongping Y; Yao W; Xuyong L; Shupei R; Hui X; Jiazhuo C
    Environ Sci Pollut Res Int; 2021 Jul; 28(28):37413-37423. PubMed ID: 33715119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthogonal experimental study on the compressibility characteristics of bank sandy silt based on freeze-thaw effects.
    Yang Z; Mou X; Ji H; Mao Y; Song H
    Heliyon; 2024 May; 10(10):e31545. PubMed ID: 38818211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties and Constitutive Model of the Cement-Improved Loess under Freeze-Thaw Conditions.
    Niu Y; Hou L; Qin Z; Wang X; Zhang Y; Shao W; Jiang G; Guo X; Zhang J
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoscopic structural damage and permeability evolution of Shale subjected to freeze-thaw treatment.
    Wang JG; Xuan ZQ; Jin Q; Sun WJ; Liang B; Yu QR
    Sci Rep; 2022 Feb; 12(1):2202. PubMed ID: 35140297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of rooted soil under freeze-thaw cycles and extended binary medium constitutive model.
    Luo W; Xiang B; Liu E; Zhao H; Wu K; He Y
    Sci Rep; 2023 Aug; 13(1):13607. PubMed ID: 37604966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze-thaw cycles have minimal effect on the mineralisation of low molecular weight, dissolved organic carbon in Arctic soils.
    Foster A; Jones DL; Cooper EJ; Roberts P
    Polar Biol; 2016; 39(12):2387-2401. PubMed ID: 32669755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation constitutive model of subgrade soil under intermittent cyclic loading.
    Zhang B; Chen K; Hu X; Zhang X; Luo G; Chen R
    Sci Rep; 2023 Jan; 13(1):301. PubMed ID: 36609517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of in situ freeze-thaw cycles on winter soil respiration in mid-temperate plantation forests.
    Gao D; Liu Z; Bai E
    Sci Total Environ; 2021 Nov; 793():148567. PubMed ID: 34175599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of litter addition on the dynamics of soil humic substances during freeze-thaw events in a subalpine forest.].
    Wei XY; Yang YL; Wu FZ; Chen ZH; Chen Y; Dong YL; Zhang L
    Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2257-2266. PubMed ID: 31418228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.